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Abstract 

This research aimed to explore the potential of applying deep learning to software bug prediction. The 

study utilized various data preprocessing techniques that were essential in preparing the data for 

analysis, using a set of commonly available software bug reports and related metrics. In the data 

collection and preprocessing phase, the dataset was filtered to focus on critical software metrics, scaled 

for consistency, and additional techniques such as feature engineering and standardization were 

employed to enhance data variability. In order to analyze the effectiveness of the model in predicting 

software faults, the dataset was split so that it could be used for testing and training purposes. Several 

deep learning models, include CNN and LSTM architectures, were developed utilizing the preprocessed 

dataset in order to enhance the performance of the models. Subsequently, a hybrid ensemble technique 

was employed, combining the prediction outcomes of the best-performing individual models to form an 

ensemble model. Using test datasets, each model's performance was assessed using common assessment 

measures including precision, F1 score, accuracy, and recall. The ensemble models outperformed 

individual models in bug prediction, as demonstrated by higher accuracy and F1 scores. The final model 

achieved an accuracy of 96%, which was considered highly satisfactory for predicting software defects. 

Keyword: Software bug prediction, deep learning, computer vision, Convolutional neural networks. 

INTRODUCTION  

Software bugs may be due to various reasons such as faulty requirements 

definition, coding errors, logical design errors, non-compliance with coding 

instructions, testing shortcomings, etc. Bugs can get introduced at any stage in the 

software development process. Software bugs reflect poor quality, therefore two 

quality objectives of the software development process. 

The process of developing software includes bugs & faults, which may cause 

failures of the system vulnerabilities in security, and financial losses. Predicting and 

identifying defects early in development helps decrease debugging and maintenance 

costs and labor. Software bug prediction, a discipline of software engineering, 

develops methods and models to detect defective software components to help 

engineers prioritize testing and debugging. The process of fixing software defects 

is both time-consuming and expensive. It is possible to enhance software quality 

and decrease expenses by predicting defects early on in the development process. 

This research paper investigates several strategies for predicting software flaws in 

order to discover probable issues and maximize the effectiveness of debugging 

efforts. 

Fixing bugs or flaws in software is the primary way that consistency and quality 

are achieved. However, some bugs may originate from non-code-related sources 

(such byte code encoding or compilers). Coding is the primary cause of errors in 

software. Examining and testing software is the conventional method of identifying 

flaws. Yet, a significant amount of time and effort may be needed for these tasks. 

As an alternative to a totally manual approach, frequent prediction of flawed 

software modules at an early stage may help engineers improve code quality at a 

lower cost.
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As a result, software defect prediction, also known as SDP, 

is a promising strategy for increasing software quality since 

it aims to discover any defects in the program as quickly as 

possible. The Software Development Process (SDP) has thus 

become an important field of research in the modern age of 

technology development and testing. 

It is difficult to predict software's defect-prone areas 

before making significant attempts to evaluate errors. 

Finding the problematic areas of source code with improved 

fault prediction performance is the primary difficulty of 

SDP. For many years, a variety of strategies and tactics have 

been put out and documented in the literature in order to 

achieve this. While some research has concentrated upon the 

semantic analysis of the source code, several researchers 

employ learning-based techniques to achieve higher 

accuracy in SDP. To create effective SDP models, the 

researchers have been implementing ML (machine learning) 

as well as in recent times, deep learning (DL) methods. 

Manual feature extraction is necessary for ML-based SDP 

approaches, mostly based on metrics for software. While 

software metrics are useful for identifying software defects, 

individually extracted features are difficult to create and do 

not fully capture the semantic information provided by bug 

reporting methods. Conversely, deep learning (DL) methods 

automatically extract higher-level characteristics and learn 

from higher-dimensional and more complicated data. As a 

result, a lot of academics have been working on creating 

SDP model using DL-based methods lately. 

Software Bug Prediction (SBP) aims to predict buggy or 

faulty software constructs or modules before they affect 

software performance i.e., during the pre-deployment phase 

of the SDLC. In this way, SBP forms a core component of 

the overarching framework of Software Quality Assurance 

(SQA)  

RELATED WORK 

The author of this research paper addresses the rising 

significance of quality of software as a crucial component of 

system dependability. In many R&D departments, software 

engineering concepts are becoming more and more 

important. A large quantity of previous fault data is created 

and gathered over the software's development and operation 

stages, but it is seldom studied and exploited. Software 

developers may discover error-prone modules and probable 

failure types early on and facilitate quick fixes by using 

software failure prediction technology, which has the ability 

to foresee software faults before testing. Building a high-

performing applications prediction of defects method for 

system software still faces a number of difficulties. First of 

all, failure situations in current system software are varied 

and challenging to identify. Second, a lot of the problem data 

is repetitious, jumbled, and lacking. Finally, there aren't 

many predictive models that provide good interpretability 

together with great performance. This research article 

investigates the building strategies for creating efficient 

software models for defect prediction that are suited to 

system software requirements to respond to these difficulties  

This study emphasizes software risk component 

categorization for developers. This category improves 

software availability, security, and project management. A 

unique risk estimating technique was developed to help 

internal stakeholders analyze software risk by forecasting a 

quantifiable risk value. Bug-fix time assessments, duplicate 

bug records, and software component priority levels are used 

to derive this figure from historical software bug reports. 

The suggested method uses TensorFlow and machine 

learning to forecast the likelihood of software bugs using the 

Mozilla Core datasets (Connections: HTTP software 

component). While risk levels ranged from 27.4% to 84%, 

the highest predicted accuracy for bug-fix time was 35%. 

Bug-fix time estimations correlated strongly with risk 

ratings, but duplicate bug records correlated less. 

The researchers have suggested topic models to enhance 

the triaging of software bugs. The software bugs' varied 

phrases and count are represented by the vector space model. 

Sometimes different terminology used by developers signify 

different things, and depending on the situation, the same 

terms might indicate different things. For this reason, 

polysemous and synonymous terms are not handled by the 

vector space model. The area of bug triaging has become 

increasingly aware of this issue. Modeling of topics has been 

frequently used to solve this issue. Based on the words found 

in the file, topics are generated in the topic model, which 

helps with issues related to term synonyms and polysemy.  

An explanation is provided by the author of this research 

paper on how machine learning classifiers have evolved into 

helpful tools for recognizing possible issues in source code 

file updates. Following initial training on historical software 

data, the classifiers are then used to make predictions about 

potential software flaws. On the other hand, the current 

classifier-based bug predictions systems have a number of 

significant shortcomings, two of the most significant of 

which are their dependence on a huge number of features 

and their potential lack of accuracy for practical 

implementations. It is possible that the methodology's 

accuracy and scalability will suffer as a result of the depth 

of its features. According to the findings of the study, a 
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feature selection approach that was developed specifically 

with classification-based bug predictions might be used to 

solve these issues. With the help of this technique, software 

changes faults may be anticipated, and a comprehensive 

investigation of the efficiency of Bayes naive and Support 

Vector Machine, or SVM, classifiers is carried out. 

[8] In their study, the authors further clarify that a 

multitude of software metrics are accessible for the purpose 

of software defect prediction. Working with fewer sets of 

critical metrics and concentrating only on those measures is 

always advised when predicting software defects. To 

examine the relationship between software metrics and fault 

proneness, they used a Bayesian network. They have 

specified two more metrics, Source Code Quality 

Metrics and a Number of Researchers, to go along with the 

metrics used in Promise Repository. They have chosen nine 

datasets from the Promises Repository for their trial. They 

came to the conclusion that although NOC and DIT are less 

efficient and unreliable, RFC, LOC, and LOCQ are more 

successful in reducing error proneness. Emphasis has been 

placed on working with a smaller set of software metrics, 

and their future work will incorporate more software metrics 

as well as metrics to discover the optimum metrics utilized 

for defect prediction. 

DEE LEARNING ARCHITECTURES 

CNN: Utilizing Convolutional Neural Network for 

ordered grids data processing is the primary application of 

these neural networks. In addition, they are also used for the 

purpose of predicting software faults when the data in 

question is represented as structured input. The input to a 

CNN for software bug prediction can be a matrix 

representation of software metrics or code features. For 

example, this could include data related to code complexity, 

number of lines of code, number of commits, developer 

activities, & previous bug occurrences. Each software file or 

code segment is converted into a matrix format suitable for 

the CNN input layer. Next, the convolutional layer is the 

core element of CNNs. The convolutional layer adds filter 

(the kernels) to the input data in software bug prediction. 

These filters are used to discover local patterns or 

characteristics by swiping over the input matrix. For 

example, filters may identify patterns in code metrics or 

detect regions in the software that have similar complexity 

profiles, making them prone to bugs. To add non-linearity to 

the model, an activation function such as the Rectified 

Linear Unit (ReLU) is used after the convolution procedure. 

By doing this step, the model may learn more intricate 

connections between the software problems and the input 

characteristics. Reducing the number of dimensions of the 

feature maps by pooling layers—usually max-pooling—

makes a network more computationally effective and lowers 

the chance of overfitting. By eliminating less relevant data 

and concentrating on the most significant traits, pooling aids 

in down-sampling the input data. The output gets flattened 

into one-dimensional vectors and processed through layers 

that are fully connected after a number of convolutional and 

pooling layers. These layers combine all the learned features 

to predict whether a specific piece of software or code 

segment contains bugs. The fully connected layers integrate 

the extracted patterns from the previous layers to make a 

final decision about the bug likelihood.  The output layer 

typically uses a sigmoid or SoftMax activation function to 

predict the probability of a software bug. For binary 

classification (buggy or non-buggy), the output might be a 

single value between 0 and 1, indicating the likelihood of a 

bug. In multi-class classification (e.g., predicting the 

severity of a bug), the SoftMax function is used to assign 

probabilities to multiple categories. 

LSTM: Recurrent neural networks, or RNNs, that are 

able to learn and preserve long-term dependence in 

sequential input are referred to as Long Short-Term Memory 

networks and LSTMs for short. These networks are more 

often used in artificial intelligence. The input to an LSTM in 

software bug prediction is typically a sequence of time-

dependent data. The core of the LSTM model is its memory 

cell structure, which is designed to maintain information 

over long time intervals. This is crucial in software bug 

prediction, where the occurrence of a bug may depend on 

events (e.g., code changes or bug reports) from much earlier 

in the software development lifecycle. LSTMs have three 

main components that help manage information flow: Forget 

Gate: Selects which data to ignore from the preceding time 

step. For software bug prediction, this might involve 

forgetting older code changes that are less relevant for 

predicting current bugs. Input Gate: The input gate selects 

what fresh data goes into the memory cell. This aids in the 

model's concentration on the most important elements of the 

software's present state, including recently committed 

changes or bug patches. Output Gate: During each time step, 

the output gate is responsible for controlling the results of 

current memory state. This information is then utilized to 

produce predictions. LSTM models process data 

sequentially, which is well-suited for time-series data like: 

Commit histories and Code changes over time. After 

processing the sequence of inputs (e.g., commits or software 

metrics over time), the final LSTM output is passed through 

a fully connected layer to make predictions. The output 
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could be a binary classification (buggy or non-buggy code) 

or a probability score that indicates the likelihood of a bug 

in the future version of the software.

METHODOLOGY 

 

Figure 1 Flow Chart of Proposed Model 

Dataset 

The information was gathered from kaggle.com, a well-

known venue for machine learning and data science 

contests. The topics addressed in "Software bug prediction: 

JM1 dataset" are the subjects of data collection. On Kaggle, 

a large number of datasets are available for public use. 

Individuals and teams may compete to solve a variety of 

data-related challenges on the well-known platform Kaggle, 

which also hosts datasets and data science contests. The 

dataset’s structural organization to describe several key 

columns, each column provides distinct facets of software 

development and bug related information essential for 

analytical process such as lines of code (LOC), cyclomatic 

complexity, code churn, and coupling between objects and 

bug reports as bug ID, description, severity, priority, and 

status (open, closed, in progress). It aids in the analysis of 

the kinds and severity of errors that arise during the 

development process. 

 
 

Figure 2 Dataset 
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Overall, the data collection process in this research involved 

careful selection and cleaning of the data to ensure that it 

was of high quality and suitable for the research question at 

hand. 

Data Pre-processing 

In software bug prediction, data quality affects the 

performance of predictive model. The dataset has twenty-

three columns and 10885 observations in total, providing 

a sample set for analysis. Assurance of the efficacy and 

reliability of the dataset for software bug identification was 

our primary objective. A number of processes are involved 

in data preparation that help convert unformatted data into 

formatted data that is appropriate for deep learning models. 

Each step in the data preparation was carefully designed to 

address specific challenges and optimize the dataset for 

subsequent analysis and modeling: 

• Data cleaning: In this process different step is used to 

cleaning the data such as handling missing value, 

removing duplicates and inconsistent data. 

• Handling Missing Values: Missing data in features 

like commit messages or bug descriptions can be filled 

using techniques like imputation (e.g., using the 

median or mean for numerical features) or simply 

removing rows with missing values for certain cases. 

• Removing Duplicates: There might be duplicate 

records, especially in bug tracking data (e.g., duplicate 

bug reports). These can be removed to avoid bias in the 

prediction model. 

• Correcting Inconsistencies: Fixing any 

inconsistencies in labels, formatting issues, or typos in 

categorical features like bug severity, commit 

messages, etc. 

• Feature Engineering: Adding additional features and 

assisting in the extraction of more important details 

from the raw data are aspects of feature engineering. 

For example: Time based feature, developer-specific 

feature, code complexity metrics, code churn and 

textual analysis of bug reports. 

• Data labeling: In data labeling defining the target 

variables and assigning labels, the target variables is 

typically whether the code module is defect or non-

defect. This can be extracted from historical bug 

reports like binary classification and multi-class 

classification. And in assigning labels, ensure each 

code module commit is correctly labeled, based on bug 

reports.  

• Data Splitting: We divided the data set in test and 

training sets in order to swiftly assess the effectiveness 

of the deep learning models. The testing sets 

functioned as a separate dataset for assessing model 

performance, whilst the training set, which included 

the bulk of the data, was utilized to train the models 

and assured that the models have been trained and 

assessed on separate subsets of data by dividing the 

dataset in this way, which allowed for accurate 

estimate of the model's performance and generalization 

to previously unknown data. 

Training 

This work proposes a hybrid ensembles model for 

accurate software bug identification. Combining 

Convolutional neural network with LSTM deep learning 

approaches increases predictive power. An organized, 

iterative process established and optimized this hybrid 

ensemble approach. 

1. CNN 

Utilizing Convolutional Neural Network for ordered 

grids data processing is the primary application of these 

neural networks. In addition, they are also used for the 

purpose of predicting software faults when the data in 

question is represented as structured input.  

2. LSTM 

Recurrent neural networks, or RNNs, that are able to 

learn and preserve long-term dependence in sequential input 

are referred to as Long Short-Term Memory networks 

and LSTMs for short. These networks are more often used 

in artificial intelligence. 

The proposed model is a hybrid deep learning 

architecture combining convolutional layers (Conv1D) and 

recurrent layers (LSTM), followed by dense layers for 

binary classification. 

Initially, the data is reshaped to include a third 

dimension, as the Conv1D layer requires a 3D input shape. 

This additional dimension (with a size of 1) represents a 

channel, as needed by the Conv1D layer. 

The first layer is a Conv1D, which applies a 1D 

convolution over the input sequence. It uses 16 filters, each 

of size 2, to capture local patterns in the data. This helps in 

feature extraction from the input sequence by sliding the 

filters over the data and performing element-wise 

multiplications. 

After the convolution, a MaxPooling1D layer is used to 

down-sample the input. This reduces the size of the output 
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by taking the maximum value within each pool (group) of 

values. Pooling helps reduce computational cost and prevent 

overfitting. 

Following this, the LSTM layer is applied to capture 

temporal dependencies or patterns across the sequence data. 

The LSTM layer has 8 units, and it's set to return a single 

output instead of a sequence of outputs because 

return_sequences is set to False. This layer is critical for 

learning from sequences or time-dependent data. 

A dense layer with eight units & a tanh activation 

function comes next. Because it produces value between -1 

and 1, the activation function of tanh is appropriate for 

processing learnt characteristics. 

Overfitting is avoided by adding a Dropout layer with a 

rate of 0.2. During training, 20% of the neuron in the layer 

are randomly deactivated via dropout, which strengthens the 

model. 

Finally, the sigmoid activation function and a single unit 

Dense layer are used for binary classification. That is all the 

sigmoid function, a continuously and strictly rising function, 

accomplishes. The aesthetics of probability theory are the 

best that the model is taking the chance of 0, or 1 of the 

classes. If the model is binary, it will output the probabilities 

through a sigmoid function. 

3. Compilation and training 

Three evaluation metrics—binary accuracy, precision, 

and recall—are used to further test the model once it has 

been assembled with an optimizer called Adam to reduce the 

loss function's binary cross-entropy. These metrics, 

however, give a clearer picture by explaining the model’s 

behavior based on the count of true positives, false positives, 

and conditional negatives. 

4. Model assessment 

To ensure bug classification accuracy and reliability, our 

software bug prediction research must analyse deep learning 

models. For model evaluation, we focus on accuracy. These 

metrics give crucial information about the model's 

classification skills and a good platform for comparing 

models and hybrids' software bugs classification abilities. 

Finally, the efficiency of the models that were trained was 

evaluated based on the suitable assessment criteria, which 

included the following: Accuracy, recall, precision and F1-

score. 

RESULTS AND DISCUSSION   

Based on evaluation criteria, the model classified 

software bug prediction successfully. The model achieves 

84% for recall, 94% for precision, 96% for accuracy, and 

89% for F1 Score. These findings show how well the model 

categorizes software bug prediction. Calculate accuracy by 

dividing the total number of false positives and genuine 

positive by the total number of true positives. It evaluates 

how well the model finds good examples. The model's 96% 

accuracy scores in recognizing positive events. For the 

purpose of computing the recall metric, the number of false 

negatives and true positives is divided by the total number 

of true positives. It acts as a gauge to determine whether or 

not the model is capable of identifying each and every 

outstanding case. The fact that the model has a recall score 

of 84% demonstrates that it has a very high level of 

memories for positive instances. During process of 

computing F1 Score, which represents a weighted 

measurement of the accuracy of the model, recall and 

accuracy are taken into account. The recall and accuracy 

essential methods are used in the computation of this value. 

The F1 Score of the model is 89%, which indicates that it 

was able to strike an optimal balance between the 

accuracy & recall.  

Table 1 Evaluation on Test data 

Metric Value 

Precision 94% 

Recall 84% 

F1 Score 89% 

Accuracy 96% 

Here are visual results of proposed mode – 

 

Figure 4 Confusion Matrix of proposed model on test 

data 
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Figure 5 Confusion Matrix 

 

Our suggested approach to software bug prediction is a 

major improvement over current practices, especially with 

regard to scalability, accuracy, and resilience. By comparing 

our approach with the existing work, and highlight the 

improvements and novelty of our research. It is crucial to 

assess our suggested model's accuracy, efficiency, and 

resilience against current methods in order to prove its 

effectiveness. Below is a detailed comparison between our 

proposed method and existing work in software bug 

prediction: 

Table 2 Comparing the Proposed method with 

Existing Work 

Model Accuracy 

Random forest (Exiting work) [9] 82% 

Hybrid Ensemble Model 

(Proposed Work) 

96% 

Prior research used the various type of machine learning 

model and convolutional neural network to classify the 

software bug prediction while in the proposed model used 

deep learning models. The following findings were obtained 

by using the CNN + LSTM model to predict software bug 

classification in the proposed work on the "Software bug 

predictions using machine learning on JM1 dataset": 

accuracy of 96%, F1 score of 89%, recall of 84% and 

precision of 94%. We compared our results with the results 

of the base paper, which used the machine learning model 

“Random Forest” on the same dataset and achieved 

precision of 75%, recall of 80%, F1 score of 75% and 

accuracyof82%. 

 

Figure 6 Graph of Comparing the Proposed method 

with Existing Work 

CONCLUSION 

In conclusion, to increase software quality and 

dependability, software bug predictions are a crucial area of 

study for static code analysis. This is a method where a 

model for prediction is built utilizing certain software 

metrics in order to forecast future software problems based 

on past data. Various datasets, metrics, and performance 
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measurements have been used in the presentation of several 

methodologies. The goals of this investigation have been 

effectively met. The article evaluates the objectives, presents 

a thorough analysis of deep learning approaches used to 

software bug prediction, and employs the most effective 

approaches in this investigation. We used several 

performance metrics in order to compare and assess the 

effectiveness of the suggested models. According to the 

findings, DL approaches are becoming more and more 

popular in software bug predictions as a means of increasing 

problem detection efficiency. 

First, enhance feature engineering technique to identify 

and incorporate new metrics that may better predict bugs is 

essential. Combining traditional metrics with advanced 

software engineering practices can yield more informative 

datasets. 

Second, investigating transfer learning techniques could 

improve model performance when applied to new projects 

or evolving software systems. Pre-trained models on diverse 

datasets might provide a foundation for better predictions in 

specific contexts. 
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