
 International Journal of Innovations In Science Engineering And Management

26 http://ijisem.com

OPEN ACCESS

Volume: 3

Issue: 4

Month: December

Year: 2024

ISSN: 2583-7117

Published:06-12.2024

Citation:

Md Nasim Uddin Ansari, Pankaj

Richhariya, Deep Hybrid Intelligence:

CNN-LSTM for Accurate Software Bug

Prediction, International Journal of

Innovations In Science Engineering And

Management, vol. 3, no. 4, 2024, pp.

26–33.

DOI

10.69968//ijisem.2024v3i426-33

This work is licensed under a Creative

Commons Attribution-Share Alike 4.0

International License

Deep Hybrid Intelligence: CNN-LSTM for

Accurate Software Bug Prediction

Md Nasim Uddin Ansari1, Pankaj Richhariya 2

1 Research Scholar. Department of Computer Science, Bhopal Institute of Technology and Science
2HOD, Department of Computer Science, Bhopal Institute of Technology & Science

Abstract

This research aimed to explore the potential of applying deep learning to software bug prediction. The

study utilized various data preprocessing techniques that were essential in preparing the data for

analysis, using a set of commonly available software bug reports and related metrics. In the data

collection and preprocessing phase, the dataset was filtered to focus on critical software metrics, scaled

for consistency, and additional techniques such as feature engineering and standardization were

employed to enhance data variability. In order to analyze the effectiveness of the model in predicting

software faults, the dataset was split so that it could be used for testing and training purposes. Several

deep learning models, include CNN and LSTM architectures, were developed utilizing the preprocessed

dataset in order to enhance the performance of the models. Subsequently, a hybrid ensemble technique

was employed, combining the prediction outcomes of the best-performing individual models to form an

ensemble model. Using test datasets, each model's performance was assessed using common assessment

measures including precision, F1 score, accuracy, and recall. The ensemble models outperformed

individual models in bug prediction, as demonstrated by higher accuracy and F1 scores. The final model

achieved an accuracy of 96%, which was considered highly satisfactory for predicting software defects.

Keyword: Software bug prediction, deep learning, computer vision, Convolutional neural networks.

INTRODUCTION

Software bugs may be due to various reasons such as faulty requirements

definition, coding errors, logical design errors, non-compliance with coding

instructions, testing shortcomings, etc. Bugs can get introduced at any stage in the

software development process. Software bugs reflect poor quality, therefore two

quality objectives of the software development process.

The process of developing software includes bugs & faults, which may cause

failures of the system vulnerabilities in security, and financial losses. Predicting and

identifying defects early in development helps decrease debugging and maintenance

costs and labor. Software bug prediction, a discipline of software engineering,

develops methods and models to detect defective software components to help

engineers prioritize testing and debugging. The process of fixing software defects

is both time-consuming and expensive. It is possible to enhance software quality

and decrease expenses by predicting defects early on in the development process.

This research paper investigates several strategies for predicting software flaws in

order to discover probable issues and maximize the effectiveness of debugging

efforts.

Fixing bugs or flaws in software is the primary way that consistency and quality

are achieved. However, some bugs may originate from non-code-related sources

(such byte code encoding or compilers). Coding is the primary cause of errors in

software. Examining and testing software is the conventional method of identifying

flaws. Yet, a significant amount of time and effort may be needed for these tasks.

As an alternative to a totally manual approach, frequent prediction of flawed

software modules at an early stage may help engineers improve code quality at a

lower cost.

http://ijisem.com/
https://crossmark.crossref.org/dialog?doi=10.69968//ijisem.2024v3i426-33
https://ijisem.com/journal/index.php/ijisem/article/view/176

International Journal of Innovations In Science Engineering And Management

http://ijisem.com 27

As a result, software defect prediction, also known as SDP,

is a promising strategy for increasing software quality since

it aims to discover any defects in the program as quickly as

possible. The Software Development Process (SDP) has thus

become an important field of research in the modern age of

technology development and testing.

It is difficult to predict software's defect-prone areas

before making significant attempts to evaluate errors.

Finding the problematic areas of source code with improved

fault prediction performance is the primary difficulty of

SDP. For many years, a variety of strategies and tactics have

been put out and documented in the literature in order to

achieve this. While some research has concentrated upon the

semantic analysis of the source code, several researchers

employ learning-based techniques to achieve higher

accuracy in SDP. To create effective SDP models, the

researchers have been implementing ML (machine learning)

as well as in recent times, deep learning (DL) methods.

Manual feature extraction is necessary for ML-based SDP

approaches, mostly based on metrics for software. While

software metrics are useful for identifying software defects,

individually extracted features are difficult to create and do

not fully capture the semantic information provided by bug

reporting methods. Conversely, deep learning (DL) methods

automatically extract higher-level characteristics and learn

from higher-dimensional and more complicated data. As a

result, a lot of academics have been working on creating

SDP model using DL-based methods lately.

Software Bug Prediction (SBP) aims to predict buggy or

faulty software constructs or modules before they affect

software performance i.e., during the pre-deployment phase

of the SDLC. In this way, SBP forms a core component of

the overarching framework of Software Quality Assurance

(SQA)

RELATED WORK

The author of this research paper addresses the rising

significance of quality of software as a crucial component of

system dependability. In many R&D departments, software

engineering concepts are becoming more and more

important. A large quantity of previous fault data is created

and gathered over the software's development and operation

stages, but it is seldom studied and exploited. Software

developers may discover error-prone modules and probable

failure types early on and facilitate quick fixes by using

software failure prediction technology, which has the ability

to foresee software faults before testing. Building a high-

performing applications prediction of defects method for

system software still faces a number of difficulties. First of

all, failure situations in current system software are varied

and challenging to identify. Second, a lot of the problem data

is repetitious, jumbled, and lacking. Finally, there aren't

many predictive models that provide good interpretability

together with great performance. This research article

investigates the building strategies for creating efficient

software models for defect prediction that are suited to

system software requirements to respond to these difficulties

This study emphasizes software risk component

categorization for developers. This category improves

software availability, security, and project management. A

unique risk estimating technique was developed to help

internal stakeholders analyze software risk by forecasting a

quantifiable risk value. Bug-fix time assessments, duplicate

bug records, and software component priority levels are used

to derive this figure from historical software bug reports.

The suggested method uses TensorFlow and machine

learning to forecast the likelihood of software bugs using the

Mozilla Core datasets (Connections: HTTP software

component). While risk levels ranged from 27.4% to 84%,

the highest predicted accuracy for bug-fix time was 35%.

Bug-fix time estimations correlated strongly with risk

ratings, but duplicate bug records correlated less.

The researchers have suggested topic models to enhance

the triaging of software bugs. The software bugs' varied

phrases and count are represented by the vector space model.

Sometimes different terminology used by developers signify

different things, and depending on the situation, the same

terms might indicate different things. For this reason,

polysemous and synonymous terms are not handled by the

vector space model. The area of bug triaging has become

increasingly aware of this issue. Modeling of topics has been

frequently used to solve this issue. Based on the words found

in the file, topics are generated in the topic model, which

helps with issues related to term synonyms and polysemy.

An explanation is provided by the author of this research

paper on how machine learning classifiers have evolved into

helpful tools for recognizing possible issues in source code

file updates. Following initial training on historical software

data, the classifiers are then used to make predictions about

potential software flaws. On the other hand, the current

classifier-based bug predictions systems have a number of

significant shortcomings, two of the most significant of

which are their dependence on a huge number of features

and their potential lack of accuracy for practical

implementations. It is possible that the methodology's

accuracy and scalability will suffer as a result of the depth

of its features. According to the findings of the study, a

http://ijisem.com/

 International Journal of Innovations In Science Engineering And Management

28 http://ijisem.com

feature selection approach that was developed specifically

with classification-based bug predictions might be used to

solve these issues. With the help of this technique, software

changes faults may be anticipated, and a comprehensive

investigation of the efficiency of Bayes naive and Support

Vector Machine, or SVM, classifiers is carried out.

[8] In their study, the authors further clarify that a

multitude of software metrics are accessible for the purpose

of software defect prediction. Working with fewer sets of

critical metrics and concentrating only on those measures is

always advised when predicting software defects. To

examine the relationship between software metrics and fault

proneness, they used a Bayesian network. They have

specified two more metrics, Source Code Quality

Metrics and a Number of Researchers, to go along with the

metrics used in Promise Repository. They have chosen nine

datasets from the Promises Repository for their trial. They

came to the conclusion that although NOC and DIT are less

efficient and unreliable, RFC, LOC, and LOCQ are more

successful in reducing error proneness. Emphasis has been

placed on working with a smaller set of software metrics,

and their future work will incorporate more software metrics

as well as metrics to discover the optimum metrics utilized

for defect prediction.

DEE LEARNING ARCHITECTURES

CNN: Utilizing Convolutional Neural Network for

ordered grids data processing is the primary application of

these neural networks. In addition, they are also used for the

purpose of predicting software faults when the data in

question is represented as structured input. The input to a

CNN for software bug prediction can be a matrix

representation of software metrics or code features. For

example, this could include data related to code complexity,

number of lines of code, number of commits, developer

activities, & previous bug occurrences. Each software file or

code segment is converted into a matrix format suitable for

the CNN input layer. Next, the convolutional layer is the

core element of CNNs. The convolutional layer adds filter

(the kernels) to the input data in software bug prediction.

These filters are used to discover local patterns or

characteristics by swiping over the input matrix. For

example, filters may identify patterns in code metrics or

detect regions in the software that have similar complexity

profiles, making them prone to bugs. To add non-linearity to

the model, an activation function such as the Rectified

Linear Unit (ReLU) is used after the convolution procedure.

By doing this step, the model may learn more intricate

connections between the software problems and the input

characteristics. Reducing the number of dimensions of the

feature maps by pooling layers—usually max-pooling—

makes a network more computationally effective and lowers

the chance of overfitting. By eliminating less relevant data

and concentrating on the most significant traits, pooling aids

in down-sampling the input data. The output gets flattened

into one-dimensional vectors and processed through layers

that are fully connected after a number of convolutional and

pooling layers. These layers combine all the learned features

to predict whether a specific piece of software or code

segment contains bugs. The fully connected layers integrate

the extracted patterns from the previous layers to make a

final decision about the bug likelihood. The output layer

typically uses a sigmoid or SoftMax activation function to

predict the probability of a software bug. For binary

classification (buggy or non-buggy), the output might be a

single value between 0 and 1, indicating the likelihood of a

bug. In multi-class classification (e.g., predicting the

severity of a bug), the SoftMax function is used to assign

probabilities to multiple categories.

LSTM: Recurrent neural networks, or RNNs, that are

able to learn and preserve long-term dependence in

sequential input are referred to as Long Short-Term Memory

networks and LSTMs for short. These networks are more

often used in artificial intelligence. The input to an LSTM in

software bug prediction is typically a sequence of time-

dependent data. The core of the LSTM model is its memory

cell structure, which is designed to maintain information

over long time intervals. This is crucial in software bug

prediction, where the occurrence of a bug may depend on

events (e.g., code changes or bug reports) from much earlier

in the software development lifecycle. LSTMs have three

main components that help manage information flow: Forget

Gate: Selects which data to ignore from the preceding time

step. For software bug prediction, this might involve

forgetting older code changes that are less relevant for

predicting current bugs. Input Gate: The input gate selects

what fresh data goes into the memory cell. This aids in the

model's concentration on the most important elements of the

software's present state, including recently committed

changes or bug patches. Output Gate: During each time step,

the output gate is responsible for controlling the results of

current memory state. This information is then utilized to

produce predictions. LSTM models process data

sequentially, which is well-suited for time-series data like:

Commit histories and Code changes over time. After

processing the sequence of inputs (e.g., commits or software

metrics over time), the final LSTM output is passed through

a fully connected layer to make predictions. The output

http://ijisem.com/

International Journal of Innovations In Science Engineering And Management

http://ijisem.com 29

could be a binary classification (buggy or non-buggy code)

or a probability score that indicates the likelihood of a bug

in the future version of the software.

METHODOLOGY

Figure 1 Flow Chart of Proposed Model

Dataset

The information was gathered from kaggle.com, a well-

known venue for machine learning and data science

contests. The topics addressed in "Software bug prediction:

JM1 dataset" are the subjects of data collection. On Kaggle,

a large number of datasets are available for public use.

Individuals and teams may compete to solve a variety of

data-related challenges on the well-known platform Kaggle,

which also hosts datasets and data science contests. The

dataset’s structural organization to describe several key

columns, each column provides distinct facets of software

development and bug related information essential for

analytical process such as lines of code (LOC), cyclomatic

complexity, code churn, and coupling between objects and

bug reports as bug ID, description, severity, priority, and

status (open, closed, in progress). It aids in the analysis of

the kinds and severity of errors that arise during the

development process.

Figure 2 Dataset

http://ijisem.com/

 International Journal of Innovations In Science Engineering And Management

30 http://ijisem.com

Overall, the data collection process in this research involved

careful selection and cleaning of the data to ensure that it

was of high quality and suitable for the research question at

hand.

Data Pre-processing

In software bug prediction, data quality affects the

performance of predictive model. The dataset has twenty-

three columns and 10885 observations in total, providing

a sample set for analysis. Assurance of the efficacy and

reliability of the dataset for software bug identification was

our primary objective. A number of processes are involved

in data preparation that help convert unformatted data into

formatted data that is appropriate for deep learning models.

Each step in the data preparation was carefully designed to

address specific challenges and optimize the dataset for

subsequent analysis and modeling:

• Data cleaning: In this process different step is used to

cleaning the data such as handling missing value,

removing duplicates and inconsistent data.

• Handling Missing Values: Missing data in features

like commit messages or bug descriptions can be filled

using techniques like imputation (e.g., using the

median or mean for numerical features) or simply

removing rows with missing values for certain cases.

• Removing Duplicates: There might be duplicate

records, especially in bug tracking data (e.g., duplicate

bug reports). These can be removed to avoid bias in the

prediction model.

• Correcting Inconsistencies: Fixing any

inconsistencies in labels, formatting issues, or typos in

categorical features like bug severity, commit

messages, etc.

• Feature Engineering: Adding additional features and

assisting in the extraction of more important details

from the raw data are aspects of feature engineering.

For example: Time based feature, developer-specific

feature, code complexity metrics, code churn and

textual analysis of bug reports.

• Data labeling: In data labeling defining the target

variables and assigning labels, the target variables is

typically whether the code module is defect or non-

defect. This can be extracted from historical bug

reports like binary classification and multi-class

classification. And in assigning labels, ensure each

code module commit is correctly labeled, based on bug

reports.

• Data Splitting: We divided the data set in test and

training sets in order to swiftly assess the effectiveness

of the deep learning models. The testing sets

functioned as a separate dataset for assessing model

performance, whilst the training set, which included

the bulk of the data, was utilized to train the models

and assured that the models have been trained and

assessed on separate subsets of data by dividing the

dataset in this way, which allowed for accurate

estimate of the model's performance and generalization

to previously unknown data.

Training

This work proposes a hybrid ensembles model for

accurate software bug identification. Combining

Convolutional neural network with LSTM deep learning

approaches increases predictive power. An organized,

iterative process established and optimized this hybrid

ensemble approach.

1. CNN

Utilizing Convolutional Neural Network for ordered

grids data processing is the primary application of these

neural networks. In addition, they are also used for the

purpose of predicting software faults when the data in

question is represented as structured input.

2. LSTM

Recurrent neural networks, or RNNs, that are able to

learn and preserve long-term dependence in sequential input

are referred to as Long Short-Term Memory networks

and LSTMs for short. These networks are more often used

in artificial intelligence.

The proposed model is a hybrid deep learning

architecture combining convolutional layers (Conv1D) and

recurrent layers (LSTM), followed by dense layers for

binary classification.

Initially, the data is reshaped to include a third

dimension, as the Conv1D layer requires a 3D input shape.

This additional dimension (with a size of 1) represents a

channel, as needed by the Conv1D layer.

The first layer is a Conv1D, which applies a 1D

convolution over the input sequence. It uses 16 filters, each

of size 2, to capture local patterns in the data. This helps in

feature extraction from the input sequence by sliding the

filters over the data and performing element-wise

multiplications.

After the convolution, a MaxPooling1D layer is used to

down-sample the input. This reduces the size of the output

http://ijisem.com/

International Journal of Innovations In Science Engineering And Management

http://ijisem.com 31

by taking the maximum value within each pool (group) of

values. Pooling helps reduce computational cost and prevent

overfitting.

Following this, the LSTM layer is applied to capture

temporal dependencies or patterns across the sequence data.

The LSTM layer has 8 units, and it's set to return a single

output instead of a sequence of outputs because

return_sequences is set to False. This layer is critical for

learning from sequences or time-dependent data.

A dense layer with eight units & a tanh activation

function comes next. Because it produces value between -1

and 1, the activation function of tanh is appropriate for

processing learnt characteristics.

Overfitting is avoided by adding a Dropout layer with a

rate of 0.2. During training, 20% of the neuron in the layer

are randomly deactivated via dropout, which strengthens the

model.

Finally, the sigmoid activation function and a single unit

Dense layer are used for binary classification. That is all the

sigmoid function, a continuously and strictly rising function,

accomplishes. The aesthetics of probability theory are the

best that the model is taking the chance of 0, or 1 of the

classes. If the model is binary, it will output the probabilities

through a sigmoid function.

3. Compilation and training

Three evaluation metrics—binary accuracy, precision,

and recall—are used to further test the model once it has

been assembled with an optimizer called Adam to reduce the

loss function's binary cross-entropy. These metrics,

however, give a clearer picture by explaining the model’s

behavior based on the count of true positives, false positives,

and conditional negatives.

4. Model assessment

To ensure bug classification accuracy and reliability, our

software bug prediction research must analyse deep learning

models. For model evaluation, we focus on accuracy. These

metrics give crucial information about the model's

classification skills and a good platform for comparing

models and hybrids' software bugs classification abilities.

Finally, the efficiency of the models that were trained was

evaluated based on the suitable assessment criteria, which

included the following: Accuracy, recall, precision and F1-

score.

RESULTS AND DISCUSSION

Based on evaluation criteria, the model classified

software bug prediction successfully. The model achieves

84% for recall, 94% for precision, 96% for accuracy, and

89% for F1 Score. These findings show how well the model

categorizes software bug prediction. Calculate accuracy by

dividing the total number of false positives and genuine

positive by the total number of true positives. It evaluates

how well the model finds good examples. The model's 96%

accuracy scores in recognizing positive events. For the

purpose of computing the recall metric, the number of false

negatives and true positives is divided by the total number

of true positives. It acts as a gauge to determine whether or

not the model is capable of identifying each and every

outstanding case. The fact that the model has a recall score

of 84% demonstrates that it has a very high level of

memories for positive instances. During process of

computing F1 Score, which represents a weighted

measurement of the accuracy of the model, recall and

accuracy are taken into account. The recall and accuracy

essential methods are used in the computation of this value.

The F1 Score of the model is 89%, which indicates that it

was able to strike an optimal balance between the

accuracy & recall.

Table 1 Evaluation on Test data

Metric Value

Precision 94%

Recall 84%

F1 Score 89%

Accuracy 96%

Here are visual results of proposed mode –

Figure 4 Confusion Matrix of proposed model on test

data

75%

80%

85%

90%

95%

100%

Value

94%

84%

89%

96%

Evaluation on Test Data

Precision Recall F1 Score Accuracy

http://ijisem.com/

 International Journal of Innovations In Science Engineering And Management

32 http://ijisem.com

Figure 5 Confusion Matrix

Our suggested approach to software bug prediction is a

major improvement over current practices, especially with

regard to scalability, accuracy, and resilience. By comparing

our approach with the existing work, and highlight the

improvements and novelty of our research. It is crucial to

assess our suggested model's accuracy, efficiency, and

resilience against current methods in order to prove its

effectiveness. Below is a detailed comparison between our

proposed method and existing work in software bug

prediction:

Table 2 Comparing the Proposed method with

Existing Work

Model Accuracy

Random forest (Exiting work) [9] 82%

Hybrid Ensemble Model

(Proposed Work)

96%

Prior research used the various type of machine learning

model and convolutional neural network to classify the

software bug prediction while in the proposed model used

deep learning models. The following findings were obtained

by using the CNN + LSTM model to predict software bug

classification in the proposed work on the "Software bug

predictions using machine learning on JM1 dataset":

accuracy of 96%, F1 score of 89%, recall of 84% and

precision of 94%. We compared our results with the results

of the base paper, which used the machine learning model

“Random Forest” on the same dataset and achieved

precision of 75%, recall of 80%, F1 score of 75% and

accuracyof82%.

Figure 6 Graph of Comparing the Proposed method

with Existing Work

CONCLUSION

In conclusion, to increase software quality and

dependability, software bug predictions are a crucial area of

study for static code analysis. This is a method where a

model for prediction is built utilizing certain software

metrics in order to forecast future software problems based

on past data. Various datasets, metrics, and performance

75%

80%

85%

90%

95%

100%

Accuracy

82%

96%

Random forest (Exiting work)

Hybrid Ensemble Model (Proposed Work)

http://ijisem.com/

International Journal of Innovations In Science Engineering And Management

http://ijisem.com 33

measurements have been used in the presentation of several

methodologies. The goals of this investigation have been

effectively met. The article evaluates the objectives, presents

a thorough analysis of deep learning approaches used to

software bug prediction, and employs the most effective

approaches in this investigation. We used several

performance metrics in order to compare and assess the

effectiveness of the suggested models. According to the

findings, DL approaches are becoming more and more

popular in software bug predictions as a means of increasing

problem detection efficiency.

First, enhance feature engineering technique to identify

and incorporate new metrics that may better predict bugs is

essential. Combining traditional metrics with advanced

software engineering practices can yield more informative

datasets.

Second, investigating transfer learning techniques could

improve model performance when applied to new projects

or evolving software systems. Pre-trained models on diverse

datasets might provide a foundation for better predictions in

specific contexts.

REFERENCE

[1] Whitten, Neal, ―Managing software development

projects: formula for success, ‖ p. 384, 1995.

[2] Galin, Daniel, Software Quality Assurance From

theory to implementation Software Quality Assurance

From theory to implementation, 1st ed. Essex,

England: Pearson Education Limited, 2004. [Online].

Available: www.pearsoned.co.uk

[3] Ran, Yan, Shen Xiaomei, and Xu Zhaowei. "Research

and Application of Software Defect Prediction Model

based on Data Mining." 2022 IEEE International

Conference on Sensing, Diagnostics, Prognostics, and

Control (SDPC). IEEE, 2022.

[4] Mahfoodh, Hussain, and Qasem Obediat. "Software

risk estimation through bug reports analysis and bug-

fix time predictions." 2020 International Conference

on Innovation and Intelligence for Informatics,

Computing and Technologies (3ICT). IEEE, 2020.

[5] Yaojing Wang, Yuan Yao, Hanghang Tong, Xuan

Huo, Ming Li, Feng Xu, and Jian Lu. Enhancing

supervised bag localization with metadata and stack-

trace. Knowledge and Information Systems, 62:2461-

2484, 2020

[6] Kai Yang, Yi Cai, Ho-fung Leung, Raymond YK Lau,

and Qing Li. Itwf: A framework to apply term

weighting schemes in topic model. Neurocomputing,

350:248-260, 2019.

[7] Shivaji, Shivkumar, et al. "Reducing features to

improve bug prediction." 2009 IEEE/ACM

International Conference on Automated Software

Engineering. IEEE, 2009.

[8] A. Okutan and O. T. Yildiz, “Software defect

prediction using Bayesian networks,” Empir. Softw.

Eng., vol. 19, no. 1, pp. 154–181, 2014.

[9] Shailee, Nowrin Muhaimin, et al. "Software bug

prediction using machine learning on jm1

dataset." 2024 International Conference on Advances

in Computing, Communication, Electrical, and Smart

Systems (iCACCESS). IEEE, 2024.

http://ijisem.com/

