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Abstract 

Agrarian monitoring plays a vital role in promoting sustainable development by providing detailed 

insights into the distribution, health, and types of agricultural practices within a region. This 

information is crucial for managing natural resources, planning land use, and preserving biodiversity. 

Current agrarian monitoring techniques, such as multi-spectral imaging, LiDAR, Normalized 

Difference Vegetation Index (NDVI), thermal infrared imaging, UAVs (Unmanned Aerial Vehicles), 

photogrammetry, vegetation indices, and machine learning, offer significant advantages in ease of 

monitoring. However, they also have limitations, particularly in their ability to provide all-weather, 

day-and-night imaging, wide-area coverage, large data volumes, and high-resolution imagery. NISAR 

(NASA-ISRO Synthetic Aperture Radar) has emerged as a cutting-edge technology for sustainable 

agrarian monitoring. It provides valuable and precise datasets for applications such as land 

subsidence monitoring, cryosphere studies, deforestation tracking, flood prediction, forest canopy 

analysis, biomass estimation, and crop growth and health assessment. NISAR's ability to operate in all 

weather conditions and at any time of day makes it especially valuable for monitoring in cloudy or 

densely vegetated regions. By integrating AI techniques with NISAR's advanced capabilities, we can 

enhance the analysis of the vast datasets it generates, enabling more accurate predictions and better 

decision-making in agricultural management. These features collectively position NISAR as a critical 

tool for advancing our understanding of Earth's dynamic systems and supporting the sustainable 

management of natural resources. 

Keyword: NISAR, L-band, S-band, Agrarian monitoring Synthetic Aperture Radar (SAR), dual-

frequency, Artificial Intelligence. 

1. INTRODUCTION 

Agricultural monitoring is essential for sustainable development, providing 

crucial data on crop distribution, health, and practices. As global challenges like 

food security and climate change intensify, advanced technologies such as multi-

spectral imaging, LiDAR, and NDVI have become vital. However, these methods 

are limited by weather dependency and data inconsistencies (Garnett et al., 2013; 

Foley et al., 2011). The NASA-ISRO Synthetic Aperture Radar (NISAR) mission 

overcomes these limitations through dual-frequency SAR technology, offering 

high-resolution, all-weather, day-and-night imaging. The L-band penetrates 

vegetation and soil, making it ideal for monitoring biomass and soil moisture, 

while the S-band provides detailed imagery for crop health and land use (Rosen et 

al., 2021; Simons et al., 2020). NISAR is particularly effective in tropical and 

subtropical regions where cloud cover and precipitation often obscure optical 

imagery, delivering consistent data with wide-area coverage and high temporal 

resolution (Minchew et al., 2020; Lee & Pottier, 2009).
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Integrating Artificial Intelligence (AI) with NISAR data 

enhances analysis, enabling more accurate predictions and 

better decision-making in agricultural management. AI 

processing of NISAR's vast datasets allows for detecting 

subtle patterns that might elude traditional methods, 

facilitating precise predictions of crop yields and early 

identification of environmental stressors (Dubey et al., 

2021; Rathore et al., 2020s). In summary, NISAR 

represents a transformative leap in agrarian monitoring, 

offering unparalleled capabilities that support sustainable 

resource management and help address global challenges 

like climate change and food security. The insights 

provided by NISAR will be critical in shaping future 

agricultural practices and policies, guiding the global 

community toward a more sustainable and resilient future. 

2. METHODOLOGY 

Nowadays different methods for remotely Imaging and 

sensing are in practice for scientific and commercial 

purposes (Thenkabail et al., 2012; Dubayah & Drake, 

2000; Pettorelli et al., 2005; Caselles et al., 1992; Moran et 

al., 1997; Hunt et al., 2010; Turner et al., 2012; Gitelson et 

al., 1996; Simons et al., 2020  ). 

2.1. Multi-Spectral Imaging 

Multi-spectral imaging captures data across various 

wavelengths, including visible, near-infrared (NIR), and 

short-wave infrared (SWIR) bands, allowing the detection 

of surface materials based on their spectral signatures. In 

agriculture, it assesses vegetation health, monitors crop 

growth, and identifies stress factors like nutrient 

deficiencies and diseases. Multi-spectral data, from 

platforms like Landsat (OLI sensor), Sentinel-2 (MSI 

sensor), and MODIS, are used for applications such as 

yield prediction and soil moisture estimation. The 

availability of multi-temporal datasets is crucial for 

monitoring agricultural dynamics and informing 

management decisions (Thenkabail et al., 2012; Ustin & 

Middleton,2021;). Hence, capturing multi-scale spectral–

spatial characteristics of hyperspectral image pixels leading 

to good classification results ( Manok K. Singh et al., 

2021). The accuracy of multi-spectral imaging depends on 

factors like sensor resolution and atmospheric conditions. 

When integrated with machine learning, classification 

accuracies for crop type discrimination and health 

assessment can range from 80% to 95% (Zhang et al., 

2018; Tian et al., 2019). However, accuracy can be 

impacted by atmospheric interference and mixed pixels in 

lower-resolution imagery, introducing uncertainties in 

analysis (Huete et al., 2002; Goetz et al., 2003). 

2.2. LiDAR (Light Detection and Ranging) 

   LiDAR is a remote sensing technology that uses laser 

pulses to measure distances to the Earth's surface, creating 

high-resolution, three-dimensional models of terrain and 

vegetation. It is particularly effective in agriculture and 

forestry for assessing canopy structure, estimating biomass, 

and analysing terrain features. LiDAR generates detailed 

digital elevation models (DEMs) and vegetation height 

profiles, essential for precision agriculture and 

environmental monitoring (Dubayah & Drake, 2000; 

Wallace et al., 2012). The spatial information is extracted 

both from hyperspectral and LiDAR data using 

morphological operators(Manoj K et al., 2022 ). LiDAR 

data is typically collected via airborne platforms like 

helicopters and drones equipped with LiDAR sensors. The 

U.S. Geological Survey’s (USGS) 3D Elevation Program 

(3DEP) provides extensive public LiDAR data for 

agriculture, forestry, and hydrology, while commercial 

services offer customized data collection (Reutebuch et al., 

2005; Andersen et al., 2005). LiDAR is known for its 

exceptional accuracy, with vertical accuracy within 10 cm 

and horizontal accuracy as precise as 1 meter. This 

precision is crucial for applications requiring detailed 

measurements, such as slope analysis and forest inventory 

management (Hopkinson et al., 2004; Reutebuch et al., 

2005). 

However, LiDAR accuracy can be influenced by factors 

like vegetation density, sensor configuration, and the 

quality of ground control points used for calibration (Chen 

et al., 2007; Jakubowski et al., 2013). 

2.3. Normalized Difference Vegetation Index (NDVI) 

The Normalized Difference Vegetation Index (NDVI) 

is a widely utilized remote sensing index that quantifies 

vegetation greenness by comparing the reflectance of red 

(visible) and near-infrared (NIR) wavelengths. It is 

calculated using the formula: 

NDVI = (NIR- Red) / (NIR+ Red) 

NDVI values range from -1 to +1, with higher values 

indicating healthy vegetation and lower values indicating 

sparse or stressed vegetation. NDVI is crucial for 

monitoring crop growth, detecting drought stress, and 

assessing land-use changes on vegetation (Pettorelli et al., 

2005; Tucker, 1979). NDVI data is derived from satellite 

imagery, with key sources including Landsat, MODIS, and 

Sentinel-2, which provide multi-temporal measurements 

essential for tracking vegetation dynamics and long-term 

trends in vegetation health. High-resolution NDVI data 
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from Sentinel-2 enables precision farming practices (Huete 

et al., 2002; Pettorelli et al., 2005). NDVI is highly reliable 

for assessing vegetation health, with accuracy levels up to 

95% under optimal conditions (Carlson & Ripley, 1997). 

However, its accuracy can be influenced by factors like 

vegetation sparsity and soil background effects, which may 

lead to misclassification (Huete et al., 2002; Jiang et al., 

2006). The accuracy of NDVI can be further enhanced by 

integrating it with other vegetation indices and 

incorporating ancillary data like soil moisture and 

temperature (Gitelson et al., 1996; Gao, 1996). 

2.4. Thermal Infrared Imaging 

  Thermal infrared imaging measures thermal radiation 

emitted by surfaces, allowing the detection of temperature 

variations across agricultural fields. This technique is 

critical for assessing plant water stress, monitoring 

irrigation efficiency, and detecting thermal anomalies 

related to diseases or pests (Jones et al., 2009; Moran et al., 

1997). Thermal data are collected from airborne and 

satellite platforms like Landsat (TIRS) and MODIS, as well 

as UAV-mounted cameras for site-specific data in 

precision agriculture (Caselles et al., 1992; Kustas & 

Anderson, 2009). Thermal imaging achieves temperature 

accuracy within ±1°C, making it reliable for detecting 

subtle changes in plant water status (Jones et al., 2002; 

Maes & Steppe, 2012). However, its accuracy can be 

influenced by atmospheric conditions and sensor 

calibration. Integrating thermal data with other modalities 

like multi-spectral or LiDAR can enhance its precision and 

applicability in precision agriculture (Luquet et al., 2005; 

Cohen et al., 2005). 

2.5. UAVs (Unmanned Aerial Vehicles) 

  Unmanned Aerial Vehicles (UAVs), or drones, are 

crucial in precision agriculture, offering high-resolution 

imagery and real-time data collection. Equipped with 

various sensors, including RGB cameras, multi-spectral, 

and thermal sensors, UAVs provide detailed insights into 

crop health, soil conditions, and environmental factors, 

enabling targeted monitoring and timely interventions for 

improved farm management (Zhang & Kovacs, 2012; Hunt 

et al., 2010). 

UAV-based datasets, generated through on-demand 

flights, include high-resolution RGB images, multi-spectral 

data, and thermal imagery. These are processed into 

orthomosaics, digital surface models (DSMs), and 

vegetation indices, supporting crop monitoring, yield 

estimation, and disease detection (Colomina & Molina, 

2014; Turner et al., 2012). UAVs achieve spatial 

resolutions of a few centimeters per pixel, with accuracy 

reaching up to 95% for tasks like crop health assessment 

and field mapping (Matese et al., 2015; Daponte et al., 

2020). 

However, the accuracy of UAV data can be affected by 

factors such as flight altitude, sensor quality, and 

environmental conditions. Integrating UAV data with 

ground-based observations and other remote sensing 

methods can further enhance accuracy and provide a 

comprehensive understanding of agricultural systems 

(Bendig et al., 2014; Toth & Jóźków, 2016). 

2.6. Photogrammetry 

Photogrammetry is a method for obtaining precise 

measurements and 3D models from photographs, widely 

used in agriculture for creating digital terrain models 

(DTMs), digital surface models (DSMs), and orthophotos. 

This technology aids in evaluating field topography, crop 

canopy structure, and guiding precision agriculture 

(Colomina & Molina, 2014; Turner et al., 2012). UAVs 

equipped with high-resolution cameras are typically used to 

capture aerial images from various angles, which are then 

processed into 3D point clouds, orthomosaics, and contour 

maps for tasks such as crop monitoring, yield estimation, 

and irrigation planning (James et al., 2020; Stöcker et al., 

2017). Photogrammetry is renowned for its centimeter-

level accuracy in agricultural applications, with precision 

ranging from 1-2% of the object size depending on image 

resolution and software quality (Harwin & Lucieer, 2012; 

Remondino et al., 2014). When combined with LiDAR or 

other remote sensing technologies, photogrammetry 

provides an even more detailed and comprehensive view of 

agricultural landscapes (Hugenholtz et al., 2013; Lucieer et 

al., 2014). 

2.7. Vegetation Indices 

 Vegetation indices, such as NDVI, EVI, SAVI, and 

GNDVI, are mathematical combinations of spectral bands 

designed to quantify vegetation properties like greenness, 

density, and health. These indices are vital for monitoring 

crop conditions, assessing stress factors, and optimizing 

agricultural practices (Huete et al., 2002; Gitelson et al., 

1996). Calculated from satellite imagery datasets like 

MODIS, Landsat, and Sentinel-2, vegetation indices 

provide multi-temporal observations crucial for tracking 

vegetation dynamics and detecting early signs of 

environmental stress (Huete et al., 1999; Jackson & Huete, 

1991).The accuracy of vegetation indices, typically 

between 80% and 95%, depends on the index, sensor 

quality, and data resolution. Higher accuracy is achievable 

http://ijisem.com/
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when indices are combined with ancillary data like soil 

moisture and temperature (Gao, 1996; Jiang et al., 2006). 

High-resolution datasets from platforms like Sentinel-2 

further enhance the reliability of these indices for precision 

agriculture and environmental monitoring (Justice et al., 

1998; Brown et al., 2006). 

2.8. NISAR Mission 

The NASA-ISRO Synthetic Aperture Radar (NISAR) 

mission is a collaborative Earth observation satellite project 

between NASA and the Indian Space Research 

Organisation (ISRO), featuring advanced dual-frequency 

Synthetic Aperture Radar (SAR) operating in both L-band 

and S-band frequencies. Unlike optical sensors, SAR can 

penetrate clouds, vegetation, and certain surface layers, 

enabling high-resolution, all-weather, day-and-night 

imaging of the Earth's surface. NISAR is designed to 

monitor dynamic Earth processes, including agricultural 

monitoring, land use changes, forest biomass, and soil 

moisture, providing comprehensive data that is essential for 

sustainable resource management (Rosen et al., 2021; 

Simons et al., 2020). NISAR will generate a global dataset 

of radar imagery, covering the Earth's surface every 12 

days. This dataset will include dual-polarized, multi-

temporal, and multi-frequency SAR data, making it one of 

the most extensive sources of radar-based Earth 

observation data. NISAR's data will be crucial for 

applications such as crop monitoring, soil moisture 

mapping, and forest biomass estimation, and it will be 

accessible to the global research community for integrated 

analysis with other remote sensing datasets (Minchew et 

al., 2020; Rosen et al., 2021). NISAR’s SAR technology 

offers high-resolution imagery with spatial resolutions 

ranging from 3 to 10 meters, depending on the frequency 

band. Its dual-frequency operation allows for detailed 

surface and subsurface monitoring, providing more 

accurate assessments than traditional optical sensors, 

particularly in challenging conditions such as cloud cover 

or dense vegetation. This capability makes NISAR highly 

effective for tracking changes in crop health, soil moisture, 

and land deformation, with accuracy superior to many 

other remote sensing techniques (Saatchi et al., 2011; 

Simons et al., 2020). 

 

3. ASCENDANCY OF NISAR 

NISAR surpasses other remote sensing techniques in 

several ways: 

3.1. All-Weather, Day-and-Night Capability: Unlike 

optical and thermal sensors, NISAR can operate in 

any weather and lighting conditions, ensuring 

consistent data availability (Rosen et al., 2021). 

3.2. Dual-Frequency Operation: The combination of L-

band and S-band frequencies enables detailed analysis 

of both surface and subsurface features, making it 

more versatile than single-frequency systems (Saatchi 

et al., 2011). 

3.3. Wide-Area Coverage and High Temporal 

Resolution: NISAR provides frequent, wide-area 

coverage, allowing for timely detection of changes in 

the environment and agricultural systems (Minchew 

et al., 2020). 

3.4. Integration with Other Datasets: NISAR’s data can 

be synergistically combined with optical, thermal, and 

LiDAR datasets, enhancing the overall accuracy of 

environmental and agricultural monitoring (Hanssen 

et al., 2020). 

3.5. Advanced Data Analytics: The use of AI and 

machine learning with NISAR’s data facilitates 

deeper insights and more accurate predictions, making 

it a powerful tool for precision agriculture and 

environmental management (Lavender et al., 2019; 

Dubey et al., 2021). 

 

Figure 1. Comparison of Accuracy between NISAR 

and other Remote Sensing Techniques 
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Figure 2. Comparison Of Data Quality Between 

NISAR And Other Remote Sensing Techniques 

4. CONCLUSION 

In modern agriculture and environmental management, 

the need for accurate, timely, and comprehensive data has 

never been more critical. Remote sensing technologies like 

multi-spectral imaging, LiDAR, NDVI, thermal infrared 

imaging, UAVs, photogrammetry, and vegetation indices 

have advanced our understanding of agrarian monitoring in 

terms of yield prediction, canopy structure, vegetation 

greenness, water stress, precision agriculture, field 

topography and crop health. However, these techniques 

often face limitations such as weather dependency, spatial 

coverage, and data consistency. 

The NASA-ISRO Synthetic Aperture Radar (NISAR) 

mission offers a transformative solution to these 

challenges. NISAR's dual-frequency SAR system operates 

in both L-band and S-band, providing unparalleled 

capabilities for all-weather, day-and-night imaging. This 

ensures consistent, high-quality data across diverse climatic 

and geographic conditions, significantly enhancing the 

reliability and accuracy of monitoring efforts as evident 

from Figure-1. NISAR’s wide-area coverage and high 

temporal resolution allow for frequent and detailed 

observations of the Earth's surface, facilitating the detection 

of subtle changes in crop health, land use, and 

environmental conditions. The integration of NISAR data 

with AI and machine learning opens new avenues for 

advanced analytics, enabling more precise predictions and 

informed decision-making in agricultural management and 

sustainability practices. Figure-2 advocate NISAR's 

superiority which  lies in its comprehensive data collection 

and analysis, ability to operate under all environmental 

conditions, and potential to enhance existing datasets. As 

the world faces challenges like climate change, food 

security, and environmental degradation, NISAR’s 

contributions to global monitoring will be invaluable. 

In conclusion, NISAR is set to revolutionize agrarian 

monitoring, offering a reliable tool that meets the demands 

of modern agriculture and environmental stewardship. The 

insights provided by NISAR will be crucial in shaping 

policies and practices aimed at sustainable development, 

ensuring that the global community is better equipped to 

manage and protect natural resources in the face of 

growing challenges. As the mission progresses, the global 

research community will greatly benefit from the data and 

knowledge generated, paving the way for a more 

sustainable and resilient future. 
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