
International Journal of Innovations In Science Engineering And Management

http://ijisem.com 163

OPEN ACCESS

Volume: 4

Issue: 1

Month: February

Year: 2025

ISSN: 2583-7117

Published: 20.02.2025

Citation:

Mrs. Elavarasi Kesavan. The Evolution

of Software Design Patterns: An In-

Depth Review. International Journal of

Innovations In Science Engineering And

Management, vol. 4, no. 1, 2025, pp.

163–167.

DOI:

10.69968/ijisem.2025v4i1163-167

This work is licensed under a Creative

Commons Attribution-Share Alike 4.0

International License

The Evolution of Software Design Patterns:

An In-Depth Review

Mrs. Elavarasi Kesavan1

1Full Stack QA Architect, Cognizant

Abstract

Design patterns are repeatable fixes for common issues in software design. Even if it's helpful for

software analysis, finding design patterns may be difficult, particularly in big and intricate software

systems. A number of tools have been put out in this area to automate this procedure. Review the many

studies on software design patterns in the literature in this topic. This review highlights the varied impact

of design patterns on software quality and maintainability. While some studies suggest that design

patterns enhance software quality, others argue they can be detrimental, with results varying based on

factors like failure rates, performance, and maintainability. Design patterns such as Data Management

UI Page and Dependent Dropdown Filters improve consistency, code reuse, and development efficiency.

Among 42 design pattern detection (DPD) tools, only ten are available online, with low detection

accuracy and weak agreement among tools. GEML, a novel approach using evolutionary machine

learning, improves detection accuracy but may generate false positives due to limited training data.

Keyword: Software design patterns or Design pattern, Design pattern detection (DPD) tools, Software

quality and maintainability, Creational Pattern

1. INTRODUCTION

The fundamental challenge in the developing area of software development is

how to create systems that are quickly adjustable to changes, scalable, and

maintainable. This data suggests that developers encounter increasingly significant

issues with design, objects, behaviour, and structures as projects become more

complex software systems [1]. In order to overcome these persistent issues, certain

software design patterns are used. A framework for an effective solution to the

specific design challenge is provided by these solutions. Design patterns, like the

idioms stated before, are frameworks or principles that assist developers in making

design decisions rather than prefabricated solutions [2]. The groundbreaking book

Design Patterns: Several Design Patterns, written by the "Gang of Four" (Erich

Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides) and described in

the book Elements of Reusable Object-Oriented Software, popularised the idea of

design patterns in software engineering in 1994. They created twenty-three design

patterns, which they divided into three primary groups: behavioural, structural, and

creational [3]. These trends have developed into a collection of reference best

practices that are an excellent resource for application architects and developers to

always solve design issues without needing to look for a fresh approach [4].

Since software projects are becoming larger and more complex, using design

patterns is essential to attaining the flexibility and modularity of these systems. One

of the reasons is that patterns allow developers to abstract complex issues and create

systems that are simpler to expand and maintain [5]. By ensuring that developers in

development teams use the same terminology to describe system designs, design

patterns assist to minimise misunderstandings. Design patterns are also useful for

promoting awareness of OOD concepts, such as inheritance, polymorphism,

encapsulation, and other principles like separation of concerns and the single

responsibility principle [6].

https://crossmark.crossref.org/dialog?doi=10.69968/ijisem.2025v4i1163-167
https://doi.org/10.69968/ijisem.2025v4i1163-167

 International Journal of Innovations In Science Engineering And Management

164 http://ijisem.com

It explicitly states that software is made up of parts that

must be connected and interconnected to the point where

debugging a basic program might take a very long time.

Instead, it may be broken up into separate components that

can be independently produced, tested, and changed [7].

Software design pattern

Software design patterns, also known as design patterns,

are broad, repeatable solutions to problems that arise often

in various software design settings. The structure of a design

pattern is not inflexible enough to be incorporated straight

into source code [8]. Instead, it is a description or a template

for resolving a certain kind of issue that may be used in a

wide range of circumstances. Design patterns may be

thought of as codified best practices that programmers can

use to address typical issues while creating a system or

software application [9]. The links and interactions between

classes or objects are usually shown using object-oriented

design patterns, which do not define which final application

classes or objects are involved. It is possible that functional

programming languages are not the best fit for patterns that

suggest mutable state [10]. Object-oriented patterns are not

always appropriate for non-object-oriented languages, and

certain patterns may be made superfluous in languages that

have built-in support for resolving the issue they seek to

tackle [11], [12].

Categories of design patterns

Design patterns may be divided into three primary

categories: structural, behavioural, and creational. These

categories are significant and address several issues

pertaining to the program and its design, including build and

communicate things as well as create items. In addition to

improving code flexibility, reusability, and maintainability,

they all provide solutions that may be used again when a

particular design issue is resolved. To use design patterns in

software systems, it is essential to understand these

categories [4].

1. Creational Pattern

Because it conceals the creation process in a manner that

renders a system neutral to the creation method, the

creational pattern is connected to the issue of object creation.

Additionally, these patterns are useful when creating objects

requires complex initialisations and preparations, or when it

is difficult to preestablish the precise sorts and relationships

between objects. The latest results provide credence to the

idea that creational patterns are still crucial in today's

software development, particularly when it comes to

frameworks and libraries that can need effective and

expandable methods for producing objects. With the goal of

guaranteeing that a single class has a single instance and

providing a global point of access to it, the Singleton pattern

is the most well-known creational design [13]. Although it

is normal practice to create a new instance, Singleton might

be used when a single copy of a class requires coordinating

operations throughout the system, such administering a log

service or database connection. Latent relations between the

classes are introduced using this pattern, which makes

testing and maintenance more difficult. These issues may be

resolved by using Dependency Injection techniques in

addition to Singletons to enhance testability.

2. Structural design Patterns

By grouping classes and objects into different forms and

subsystems, structural design patterns increase the system's

flexibility and streamline administration. These patterns are

typical in applications that need to construct systems that

connect several things or objects to one another without

requiring complex control, exact connection, or demand.

Because structural patterns are made up of several smaller

components with more cohesiveness and less coupling, they

make it possible to create enormous systems. In structural

relationships, the adapter method is often used to allow

objects with incompatible interfaces to communicate with

one another [14]. This pattern is often used when developing

an application when a new feature has to be added to an

existing one without altering the application's code. For

instance, an adapter may act as a mediator between two

distinct systems in integration scenarios by converting one

system's interface into one that is appropriate for the other

system.

3. Behavioral Patterns

Behavioural patterns address how things behave when

they are used and how roles are divided or shared across

objects to address the issue dictating how these items

interact. These patterns are helpful for allocating

responsibility among objects in a system and managing how

objects interact to carry out tasks.

LITERATURE REVIEW

(Alhunait & Khan, 2023) [15] It is difficult and

complicated to design software, and it is much more difficult

to maintain high standards and quality throughout the

process. In order to address difficult software development

and design challenges, several software development

projects have used design patterns, which are repeatable

solutions to certain frequent issues. The research study that

International Journal of Innovations In Science Engineering And Management

http://ijisem.com 165

follows looks at and investigates how design patterns affect

the quality and maintainability of software. The research

investigates if there are more correctly alternatives to design

patterns or whether they are the most effective way to

address typical software design issues. The study looks at

what has been written about Design Patterns and how they

affect the software development process.

(Patel, 2024) [4] provides yet another thorough analysis

of software design patterns, going into their significance, the

organisation of the categorisation, and their impact on

software architecture and design. In addition to explaining

how to utilise design patterns, the article goes into detail on

real-world instances of design patterns as well as the

challenges and disadvantages of doing so. The options for

the future are further expanded, including the use of design

principles for serverless, AI integration, cloud-new

architectures, and Agile/DevOps. The article makes the case

that design patterns are not immune to change and are

constantly modified to integrate into the software

development processes of the sophisticated and complex

world of today. It also argues that in order for developers to

be relevant when designing today's complex, large, and

intelligent software-based systems, they must be familiar

with both established and emerging design patterns.

(Khwaja & Alshayeb, 2016) [16] As a result, instead of

capturing algorithms and data, others began working on

design pattern languages to methodically record the

abstraction described in the design pattern. While some

design-pattern specification languages aim to find design

patterns in code or design diagrams, others have other goals.

Some have attempted to describe the design pattern in a

textual or graphical environment. A comparison of these

design-pattern specification languages and an analysis of

their advantages and disadvantages have not yet been

attempted, nevertheless. Using an assessment approach for

design-pattern specification languages, this paper surveys

and compares the current design-pattern specification

languages. Design-pattern specification languages are

categorised in order to do analysis. The tools available for

the design-pattern specification languages are also briefly

described. Lastly, we list a few unresolved open research

questions.

(Moreira et al., 2022) [3] summary, the current detection

technologies have limitations, such as the inability to

compare the tools' outputs in terms of accuracy and

agreement. By comparing design pattern recognition

technologies and reviewing the literature, we fill up some of

these gaps. Despite the large number of tools that have been

released, the majority of design pattern identification

technologies are unusable and useless. In particular,

practitioners may find it difficult to locate a tool that meets

their needs. It is necessary to find ways to either improve or

combine the current techniques since they provide

complimentary but erroneous detection findings.

(Wedyan & Abufakher, 2020) [7] The goal is to provide

an explanation for these findings by taking into account

quality-affecting implementation challenges, measurements,

practices, and confounding variables. According to their

findings, quality is clearly impacted by pattern

documentation, pattern class size, and pattern dispersion

degree. Researchers used several measures to distinct

modules in case studies. The designs of controlled

experiments varied significantly. In order to reach consensus

on the impact of patterns, it is necessary to take into account

influencing elements, apply uniform metrics, and agree on

which modules to assess. It is advised that future study

examine ways to enhance the modularity of patterns.

(Barbudo et al., 2021) [11] present GEML, a cutting-

edge evolutionary machine learning-based detection

technique that makes use of a variety of software attributes.

To begin with, GEML uses an evolutionary algorithm to

extract the features that best define the DP. These features

are expressed in terms of rules that are accessible by humans

and whose syntax complies with a context-free grammar.

Second, to determine whether new code has a concealed DP

implementation, a rule-based classifier is constructed. Five

DPs from a publicly available repository that is often used

in machine learning research have been used to verify

GEML. In order to demonstrate its efficacy and resilience in

terms of detecting capabilities, we then raise this number to

15 distinct DPs. A preliminary parameter analysis was used

to fine-tune a parameter configuration whose effectiveness

ensures the approach's broad applicability without requiring

the adjustment of intricate parameters to a particular pattern.

Lastly, a demonstration tool is also included.

(Naghdipour et al., 2021) [17] Based on software

engineers' expertise, design patterns are a tried-and-true

method for resolving persistent issues and are used to

produce high-quality software designs. It is challenging to

choose the best design pattern for a given design challenge,

nevertheless, due to the abundance of them. To address this

challenge, a number of strategies using various techniques

have been put forward to automate the process of choosing

design patterns. This study aims to provide a framework

known as "DPSA" that comprises the categorisation of

current methods, a comparison of methods according to

 International Journal of Innovations In Science Engineering And Management

166 http://ijisem.com

specified standards, and an analysis of each method

according to these standards. Future research benefits from

DPSA in two ways: a) by using the present methodologies

while considering their specifications, and b) by comparing

the current and future studies.

(Yarahmadi & Hasheminejad, 2020) [18] The majority

of systems lack a document that would aid engineers in

identifying DPs from the codes. Consequently, many

methods for identifying design patterns have been proposed.

This study examines the various design pattern detection

literature that is currently accessible and reports on a variety

of topics, including data representation, design pattern type,

benefits and drawbacks for various methodologies,

quantitative findings, etc. In addition to providing a

foundation for the selection of the best design patterns, the

current inquiry report aims to direct future research by

bringing attention to the possible flaws in earlier studies.

CONCLUSION

This review examines the impact of design patterns on

software quality and maintainability, revealing mixed

findings. While some studies suggest that design patterns

improve software quality, others argue they may be

detrimental. The effect varies depending on factors such as

failure rates, performance, and maintainability. Certain

design patterns, such as Data Management UI Page and

Dependent Dropdown Filters, enhance consistency, code

reuse, and development efficiency. However, the

effectiveness of design patterns often depends on their

combination with other approaches. Regarding design

pattern detection (DPD) tools, 42 were identified, but only

ten are accessible online. Among the Gang of Four design

patterns, Composite and Observer are the most frequently

detected. Current DPD tools exhibit low accuracy and weak

detection agreement, with a high rate of false positives.

GEML, a novel approach based on evolutionary machine

learning, offers a more flexible and adaptable detection

process through an extendable context-free grammar. By

incorporating pruning methods and classification strategies,

GEML demonstrates improved accuracy and robustness.

However, limited training samples may impact its false

positive rate. Future research should focus on refining

detection tools and optimizing design pattern applications

for enhanced software quality and maintainability.

REFERENCES

[1]. M. Z. Asghar, K. A. Alam, and S. Javed, “Software

design patterns recommendation: A systematic

literature review,” Proc. - 2019 Int. Conf. Front.

Inf. Technol. FIT 2019, pp. 167–172, 2019, doi:

10.1109/FIT47737.2019.00040.

[2]. F. Al-Hawari, “Software design patterns for data

management features in web-based information

systems,” J. King Saud Univ. - Comput. Inf. Sci.,

vol. 34, no. 10, pp. 10028–10043, 2022, doi:

10.1016/j.jksuci.2022.10.003.

[3]. R. Moreira, E. FERNANDES, and E.

FIGUEIREDO, “Review-based Comparison of

Design Pattern Detection Tools,” SugarLoafPlop

2022 Lat. Am. Conf. Pattern Lang. Programs, Oct.

18, 2022, Online, vol. 1, no. 1, pp. 1–16, 2022.

[4]. H. Patel, “A research paper on software design

patterns,” vol. 13, no. 01, pp. 803–813, 2024.

[5]. H. Zhang and J. Liu, “Research Review of Design

Pattern Mining,” Proc. IEEE Int. Conf. Softw. Eng.

Serv. Sci. ICSESS, vol. 2020-October, pp. 339–

342, 2020, doi:

10.1109/ICSESS49938.2020.9237742.

[6]. L. Wang, T. Song, H. N. Song, and S. Zhang,

“Research on Design Pattern Detection Method

Based on UML Model with Extended Image

Information and Deep Learning,” Appl. Sci., vol.

12, no. 17, 2022, doi: 10.3390/app12178718.

[7]. F. Wedyan and S. Abufakher, “Impact of design

patterns on software quality: A systematic literature

review,” IET Softw., vol. 14, no. 1, pp. 1–17, 2020,

doi: 10.1049/iet-sen.2018.5446.

[8]. G. Luitel, M. Stephan, and D. Inclezan, “Model

level design pattern instance detection using

answer set programming,” Proc. - 8th Int. Work.

Model. Softw. Eng. MiSE 2016, pp. 13–19, 2016,

doi: 10.1145/2896982.2896991.

[9]. F. M. Alghamdi and M. R. J. Qureshi, “Impact of

Design Patterns on Software Maintainability,” Int.

J. Intell. Syst. Appl., vol. 6, no. 10, pp. 41–46,

2014, doi: 10.5815/ijisa.2014.10.06.

[10]. M. O. Onarcan and Y. Fu, “A Case Study on

Design Patterns and Software Defects in Open

Source Software,” J. Softw. Eng. Appl., vol. 11, no.

05, pp. 249–273, 2018, doi:

10.4236/jsea.2018.115016.

[11]. R. Barbudo, A. Ramírez, F. Servant, and J. R.

Romero, “GEML: A grammar-based evolutionary

machine learning approach for design-pattern

detection,” J. Syst. Softw., vol. 175, 2021, doi:

10.1016/j.jss.2021.110919. Chordia et al.,

“Deceptive Design Patterns in Safety

Technologies: A Case Study of the Citizen App,”

International Journal of Innovations In Science Engineering And Management

http://ijisem.com 167

Conf. Hum. Factors Comput. Syst. - Proc., 2023,

doi: 10.1145/3544548.3581258.

[12]. M. Kumar and M. Kumar, “Pattern Design and its

Applicability in Software Design Mechanism,”

Res. Rev. Int. J. Multidiscip., vol. 3, no. 11, pp.

1153–1154, 2018, doi:

10.31305/rrijm.2018.v03.i11.244.

[13]. M. A. Jalil, N. A. A. Rahman, N. H. Ali, S. A. M.

Noah, N. M. M. Noor, and F. Mohd, “Development

of A Learning Model on Software Design Pattern

Selection for Novice Developers,” ACM Int. Conf.

Proceeding Ser., pp. 108–113, 2020, doi:

10.1145/3383923.3383966.

[14]. S. A. B. A. Alhunait and M. S. Khan, “The Impact

of Design Patterns On Software Quality and

Maintainability,” pp. 1–5, 2023, [Online].

Available: www.JSR.org

[15]. S. Khwaja and M. Alshayeb, “Survey on software

design-pattern specification languages,” ACM

Comput. Surv., vol. 49, no. 1, 2016, doi:

10.1145/2926966. Naghdipour, S. M. Hossien

Hasheminejad, and M. Reza Keyvanpour, “DPSA:

A Brief Review for Design Pattern Selection

Approaches,” 26th Int. Comput. Conf. Comput.

Soc. Iran, CSICC 2021, no. December, 2021, doi:

10.1109/CSICC52343.2021.9420629.

[16]. H. Yarahmadi and S. M. H. Hasheminejad, Design

pattern detection approaches: a systematic review

of the literature, vol. 53, no. 8. Springer

Netherlands, 2020. doi: 10.1007/s10462-020-

09834-5.

