
 International Journal of Innovations In Science Engineering And Management

14 http://ijisem.com

OPEN ACCESS

Volume: 4

Issue: 2

Month: April

Year: 2025

ISSN: 2583-7117

Published: 08.04.2025

Citation:

Mrs. Elavarasi Kesavan “A Comprehensive

Review of Automated Software Testing

Tools and Techniques” International

Journal of Innovations in Science

Engineering and Management, vol. 4,

no. 2, 2025, pp. 14–20.

DOI:

10.69968/ijisem.2025v4i214-20

This work is licensed under a Creative

Commons Attribution-Share Alike 4.0

International License

A Comprehensive Review of Automated

Software Testing Tools and Techniques

Mrs. Elavarasi Kesavan1

1Full Stack QA Architect, Cognizant

Abstract

Automation testing is often needed in the software testing process to improve test results and save time

and money. Automation testing is very useful for evaluating web applications based on load, stress,

security, vulnerability, and performance. The many studies on automated software testing methods and

tools are reviewed in this article. This comprehensive review highlights that no single automated testing

tool excels in all aspects; the selection depends on project-specific criteria such as cost, usability,

support, and test type. Tools like Selenium and WATIR offer flexibility and cost-efficiency for web

applications, while UFT/QTP supports both web and desktop testing but at a higher cost. The rise of AI-

powered, self-repairing frameworks signals a shift toward more adaptive testing solutions. Additionally,

parallel execution methods significantly enhance regression testing efficiency. Ultimately, selecting the

right tool and execution strategy is crucial to minimizing time and cost in software development.

Keywords; Software testing process, Selenium, WATIR, Automation software testing tools and

techniques, Functional testing tools, Code coverage tools, Automated software engineering (ASE),

etc.

INTRODUCTION

As computer software use has grown, so too has awareness of the significance of

software management and quality. One aspect of software engineering that has to

do with the final product's quality is software testing. Software quality is ensured

by using the test to confirm, validate, and estimate the dependability of software

products. For when software systems' quality deteriorates, catastrophic outcomes

might happen [1]. Due to all of these problems, since the late 1970s, more time and

personnel have been devoted to the software testing process. As a result, software

testing has emerged as one of the most challenging and necessary procedures for

businesses, organisations, and academics. This is because software products are

used in a broad variety of applications, from everyday life to mission-critical

systems, depending on the always growing demands [2]. Software testing involves

various factors, ranging from front-end to back-end testing. Numerous functional

and non-functional software testing methodologies exist. Acceptance, system,

integration, and unit testing are all examples of functional testing methodologies

that should be used sequentially [3]. The following approaches pertain to the

operational elements of software and are considered non-functional testing

techniques: compatibility, security, usability, and performance testing [4]. The

fundamentals of software testing include determining whether the chosen test

methods are appropriate for a given software, how to conduct a scope test, which

document test procedures to follow, what test types and methods to use, what

software requirements there are, which technique to use for verification and

validation, and so on [5].

In order to achieve notable gains in productivity and quality, Automated Software

Engineering (ASE) uses software tools and methodologies to automate the

processes of software system analysis, design, implementation, testing, and

maintenance. Large and ultra-large software businesses have tackled these issues

by using ASE tools and methodologies [6].

https://crossmark.crossref.org/dialog?doi=10.69968/ijisem.2025v4i214-20
https://doi.org/10.69968/ijisem.2025v4i214-20

International Journal of Innovations In Science Engineering And Management

https://ijisem.com 15

However, because of various limits and settings, they

may not work well for small and medium-sized businesses

(SMEs). Big or ultra-large software organisations often have

greater resources, so they can spend money on R&D,

training, and other things. It might be more difficult for

SMEs to implement sophisticated or even modern ASE

technologies and processes since they often lack the means

to do so [7]. In contrast to big or ultra-big businesses, they

could still use procedures from their outdated software or

have differing requirements from their development teams

and target consumers. Automated tool assistance is also

essential for the research community to better assist software

engineers in all sizes of software firms (e.g., decreasing

rework, enhancing timely delivery, and controlling

accidental complexity) [7], [8].

Software testing

Software testing is the process of assessing and

confirming that an application or software product performs

as intended. Performance improvement and bug prevention

are two advantages of thorough testing. The most successful

software testing nowadays is continuous, meaning that

testing begins during design, continues throughout software

development, and even happens during production

deployment [8]. Continuous testing eliminates the need for

organisations to wait for the deployment of all components

before beginning testing. Test philosophies that have gained

popularity lately in the software world include shift-left,

which brings testing closer to design, and shift-right, which

involves end users doing validation. Automating every part

of testing is crucial to enabling the necessary speed of

delivery once your test strategy and management objectives

are clear [9].

Automation software testing

One essential method in software development is

automated software testing, in which testers run test cases

automatically using specialised tools. For repeated,

resource-intensive operations that are difficult to do by hand,

this method saves time and effort. Automation speeds up

time to market, lowers related costs, and improves software

quality by simplifying the testing process. Numerous

automation technologies are capable of managing a wide

range of desktop, mobile, and online applications. Any

software-driven company hoping to produce high-quality

products more rapidly must use automated software testing

in today's fast-paced development settings [10].

Importance of automated software testing

For many strong reasons, automated testing is a crucial

strategy. The first benefit is that it greatly increases

productivity by automating repeated testing operations,

which saves time and money compared to manual testing.

This increase in efficiency frees up development teams to

concentrate more on innovation and providing consumers

with value [11]. Furthermore, by lowering the possibility of

human error—a frequent problem with manual testing—

automated testing increases software dependability by

producing consistent and reproducible test findings. Faster

feedback loops are another benefit of automated testing,

which helps teams find and repair defects early in the

development cycle and reduces the likelihood of expensive

solutions. All things considered, automated testing is

essential in today's fast-paced software development

environment as it helps guarantee the quality, dependability,

and timely delivery of software products [12].

Automated Software Testing Tools

As seen in Fig. 1, software testing automation

technologies may be used for performance testing, code

coverage, functional testing, unit testing, and test

management. Continuous Integration is a typical

engineering idea that is incorporated into automated testing

(CI). A software development technique called continuous

integration entails incorporating code modifications from

many developers on a regular basis into a common

repository [13]. Since automated tests are run automatically

whenever new code is merged, they are an essential part of

continuous integration (CI). By doing this, you can make

sure that any new modifications won't cause bugs or

interfere with already-existing functionality. Early in the

development cycle, problems may be found and resolved

since developers can quickly assess the codebase's health by

including automated tests into the integration process.

Collaboration is encouraged, integration issues are

decreased, and software engineering projects retain a high-

quality codebase thanks to continuous integration [14].

Figure 1 Automated Software Testing Tools [14]

 International Journal of Innovations In Science Engineering And Management

16 http://ijisem.com

Unit Module Testing Tools: Core code pieces are

validated by this kind of testing tool. These technologies,

which are easily included into development platforms like

NetBeans, are crucial for automating testing processes.

Developers may use programming languages to

automatically run test cases by using automated testing. In

addition to looking over each line of code in the program,

unit testing tools are essential for confirming the exact

execution of certain units or methods and guaranteeing their

proper working by examining the code structure and

following best practices. JUnit, PHPUnit, NUnit, and

JMockit are a few of the unit testing frameworks.

Function Testing Tools: This kind of testing is done to

make sure the program works according to the users' needs.

We make advantage of the available functional testing tools

while doing functional testing. By providing functions with

input and then comparing their actual output with the

anticipated result for the particular test case, functional

testing tools are used to evaluate how well functions execute.

To evaluate how well a software system complies with the

requirements, functional testing technologies are used [15].

There is nothing to rewrite in the user's text. Selenium, HP

QuickTest Professional, TestComplete, Ranorex, Watir,

Tricentis Tosca Testsuite, and Test Studio are a few

examples of functional testing technologies that are often

used in software testing.

Code Coverage Tools: Which parts of the software code

have been successfully tested by the different testing tools is

determined by these automated tests. It keeps track of the

quantity of lines, statements, or code blocks that have

undergone verification by automated test suites. To evaluate

the effectiveness of the Quality Assurance (QA) initiatives

that have been carried out, this metric is crucial.

Software for Managing Tests: Test plans (including

test cases, test plans, test strategies, test results, test reports,

etc.) may be automated with the use of these tools, which

can help teams manage projects more effectively by

providing a searchable and maintainable placeholder for test

operations. Each of the several test management options has

a unique set of tools and techniques for overseeing the

testing process. On the other hand, they often provide the

chance to streamline the testing procedure, enable

immediate access to data analysis, and promote

collaboration across different project teams.

Performance Testing Tools: Techniques for

performance testing are implemented during the testing

process. The purpose of these evaluations is to assess the

program's responsiveness and stability in a diverse array of

scenarios and demand levels. In addition, it can be employed

to evaluate, quantify, validate, or verify other aspects of

software quality, such as dependability, scalability, and

resource utilisation. These techniques are effective in

assessing the performance of software or components in

terms of resource use, throughput, and stimulus-response

time in accordance with a specific set of performance

standards [16]. In addition to endurance and surge testing,

performance testing categories that offer additional benefits

include configuration, isolation, Internet testing, breakpoint

testing, and immersion testing.

Automated software testing techniques

Unit Testing: Software development is fundamentally

characterised by unit testing, which is the process of

verifying the accuracy of individual units or components

within a software system. Unit testing's primary objective is

to guarantee that each isolated unit, which may exist as a

function, method, or module, functions as intended. In order

to verify both anticipated and unexpected inputs and outputs,

developers define test cases that encompass a wide range of

scenarios. Unit testing plays a crucial role in the early

identification of defects during the development process,

which in turn enables the more efficient and cost-effective

resolution of bugs [17]. Developers are granted assurance

that their modifications to the code will not inadvertently

disrupt existing functionality by these tests, which serve as

a safety net.

Integration Testing: Integration testing is a

complementary approach to unit testing that involves the

analysis of the interactions between various units or

components of a software system. It is the primary goal to

identify potential issues that may arise during the integration

of these components and to guarantee their seamless

operation. Integrity testing is instrumental in the

identification of issues such as communication errors,

interface discrepancies, and data flow issues [18]. Two

primary methodologies for integration testing are top-down

and bottom-up. In a top-down approach, testing commences

with the highest-level modules and progresses into the

lower-level ones. On the other hand, a bottom-up approach

commences with the testing of lower-level modules, which

are subsequently integrated and tested.

System Testing: A comprehensive testing phase that

assesses the entire software system as a whole is known as

system testing. Whether the specified requirements are met

by the entire application, which includes all integrated

components, is verified. A variety of test scenarios, such as

International Journal of Innovations In Science Engineering And Management

https://ijisem.com 17

functional, performance, security, and usability testing, are

included in system testing. The goal is to guarantee that the

software operates in accordance with the set criteria and

performs as anticipated in a variety of environments. A

comprehensive evaluation of the software's suitability for

deployment is frequently conducted during the final testing

phase prior to its release to users, known as system testing.

Load Testing: One kind of performance testing that

evaluates how a software system behaves under expected

load scenarios is called load testing. The objective is to

guarantee that the application can manage the anticipated

workload and user traffic without experiencing any

performance deterioration. The purpose of load testing is to

assess the system's scalability and find any bottlenecks by

simulating actual use situations, including times of peak

demand. By doing this, businesses can guarantee a satisfying

user experience under a range of load scenarios, improve

responsiveness, and maximise system performance.

Error Testing: A software system's resilience and error-

handling skills are evaluated by purposefully introducing

mistakes, erroneous inputs, or unexpected situations. This

technique is called error testing, often referred to as negative

testing. The objective is to determine how effectively the

application recognises, reports, and recovers from

unexpected or incorrect circumstances. Error testing makes

software more dependable and user-friendly by ensuring that

it responds gracefully to unexpected inputs or

circumstances. In order to find vulnerabilities, stop

unplanned system failures, and enhance the overall quality

of the program, this kind of testing is essential.

Test Automation: Test automation is the practice of

replacing manual testing efforts with automated procedures

by automating the execution of test cases using specialised

tools and scripts. Enhancing the testing process's accuracy,

efficiency, and repeatability is the main objective of test

automation. Compared to manual testing, automated tests

may be conducted more often and reliably, giving

developers quick feedback and facilitating the early

identification of flaws. In regression testing, where

previously verified features are retested to make sure that

new modifications haven't caused problems, test automation

is very helpful. It speeds up software development overall,

facilitates pipelines for continuous integration and

continuous delivery (CI/CD), and quickens the testing cycle.

LITERATURE REVIEW

(Kumar & Rodda, 2025) [19] Evaluating automated test

failure detection and repair tools in software test automation

was the primary goal of this work. Through a comparison of

the previously evaluated sources, the evaluation highlights

the advantages and disadvantages of each, as well as

potential areas of use. Additionally, it offers

recommendations for suitable applications in a wide range

of testing scenarios and settings. The review also begins with

the shortcomings and difficulties that the state-of-the-art

methods have encountered, and it provides a forecast for the

future of automated test failure detection and repair research

and development. A review of the most widely used tools is

included at the conclusion of this article, along with the

opinions offered about current and future artificial

intelligence for robotic testing.

(Hussein Mohammed Al et al., 2023) [14] Testing is a

crucial step in identifying problems and evaluating the

product's quality, and it plays a significant role in the

software development lifecycle. figuring out software

testing techniques that save time and money. The study

looks at the advantages and disadvantages of automated

testing, how it simplifies software quality evaluation, and

how it saves time in comparison to manual testing. With

automated testing solutions, software application testing is

made easier, tailored to specific testing scenarios, and

accomplished with success.

(Samli & ORMAN, 2023) [20] Various producers have

devised a variety of web-based automated instruments with

varying properties. Deciding which web-based automated

application is most suitable for a particular testing process is

frequently a challenging task. The process of conducting

trials and selecting the appropriate automated tool is

occasionally impossible due to the high cost and licensing

requirements of many of these tools. By focussing on a

limited number of instruments and comparison criteria,

certain studies in the literature attempt to address this issue.

Still, the comparison of automated tools is a critical matter

that necessitates further investigation. For the first time in

the literature, this paper compares 14 web-based automated

tools based on 20 distinct criteria. The results of this

comprehensive review are reported.

(EROL & SENAN, 2022) [5] Compare and evaluate

various test automation tools based on factors such as cost,

performance, and usability in order to address this resource

deficit. The most popular software test automation tools

have been analysed for this purpose by conducting

experiments on computers with varying hardware

specifications and websites. The operating conditions of

software testing instruments are also contrasted and

analysed under the same conditions. This approach is

 International Journal of Innovations In Science Engineering And Management

18 http://ijisem.com

intended to provide guidance for assessing the capabilities

and properties of the testing instruments that have been

examined. In the software development process of websites,

this study is expected to serve as a valuable resource for

minimising testing costs and time.

(Malik & Mehta, 2022) [21] The automation and

development approaches are clearly demonstrated in this

paper. The research findings unequivocally demonstrate that

the usability, security, efficiency, and reliability of current

and future software programs are on the brink of

transformation as a result of the new strategy of automating

software testing realms. Testing is a critical component of

the software development process. This paper addresses a

critical and significant matter in the field of software testing.

Testing may be implemented manually or automatically.

Each of these methodologies has its own set of advantages

and disadvantages. The purpose of this paper is to conduct

automation testing using the Selenium software testing tool.

While the tester is inputting data into a web application

interface, this web testing instrument automatically records

test cases in the background.

Table 2Adavantages and disadvantages of

automated software testing [21]

Advantages Disadvantages

Enhances the quick finding

encounters of bugs with

heightened accuracy

Disadvantages Inherent

knowledge of the tool required

Saves time and energy since

the process is quite efficient

Considerable time is lost in

choosing the right approach

and tool

The test script can be

comfortably repeated

Initial cost of acquiring a test

tool is high

Improves the quality of the

testing process and

software accuracy

If playback approach is the

option, test maintenance is

quite a burden

Increased coverage owing

to the multiple testing tools

for parallel testing

encounters

High levels of proficiency

required to creat the scripts

needed for the test.

(Alferidah & Ahmed, 2020) [22] sought to identify

instruments that could enhance the reliability, efficacy, and

quality of the software systems. To ensure that a

comprehensive system test is conducted without any errors

that could have resulted in financial losses, automated

software testing tools are the solution. The majority of

automated software testing tools enable the tester to repeat

and utilise the final product, boost reliability and

performance, and reduce the necessary time. In this paper,

the most effective and efficient automated software testing

instruments are described.

(Gamido & Gamido, 2019) [23] Because it confirms if

the system satisfies user needs and specifications, software

testing is regarded as one of the most crucial steps in the

software development process. Software testing may be

done in two ways: manually and automatically. Software

testers may easily automate the software testing process via

automated testing, which makes it more efficient in terms of

time, cost, and usability. Numerous automated testing tools,

both open source and commercial, are available. In order to

assist customers in choosing the best software testing tool

for their needs, this article compares the characteristics of

open source and commercial testing solutions.

(M. A. Umar & C. Zhanfang, 2019) [24] Two critical

components of a successful and effective software testing

project are the use of appropriate testing methods and the

appropriate test automation tools/framework. Utilising a

single testing methodology will not suffice to evaluate

software and guarantee its quality; rather, a combination of

suitable testing methodologies is frequently necessary. The

initial step in attaining successful and efficient software

testing is to be familiar with the various testing methods and

tools/frameworks. A comprehensive examination of test

automation frameworks and tools is presented in this article.

Initially, the description of automated testing and its

classifications is provided, followed by an explanation of the

numerous test automation frameworks. A succinct

explanation and comparison of several of the most

frequently employed automation tools are provided.

(Sutapa et al., 2019) [25] For the benefit of other

researchers working in this area, an overview of the

automated testing methodology is provided. The results of

the review demonstrate that the automated testing strategy is

appropriate for improving regression testing with several

tenable tool alternatives, such as Robot-framework, SAHI,

and Selenium. Additionally, this article discusses a few

tenable execution technique possibilities. This review also

comes to the conclusion that one potential option for

carrying out the most effective regression testing procedure

is the parallel execution approach.

(Sneha & Malle, 2017) [26] The only way to determine

the quality of any program is via testing (software testing).

In the testing process, automation testing has had an

influence. The majority of software testing is now done

using automated tools, which reduces the number of humans

working with the program and the faults that may be

overlooked by the tester. Test cases are included in

automation testing, which facilitates the process of capturing

and storing various situations. Thus, the practice of software

International Journal of Innovations In Science Engineering And Management

https://ijisem.com 19

automation testing is essential to the success of software

testing. The goal of this research is to compare manual and

automated testing, as well as to understand the many forms

of software testing and the tools and methods used in

software testing.

CONCLUSION

This comprehensive review of automated software

testing tools and techniques highlights the significance of

selecting the right tool based on project-specific needs. The

evaluation of tools such as Selenium, QTP/UFT,

TestComplete, Ranorex, WATIR, Sahi, and SoapUI reveals

that no single tool is universally superior. Open-source tools

like Selenium are cost-effective and support cross-browser

and cross-platform testing but are limited to web

applications. Licensed tools like QTP/UFT offer broader

application testing capabilities, including web and desktop,

along with advanced features like object identification and

ALM integration, though at a high cost. WATIR provides

flexibility but lacks record and playback features. Emerging

AI-based testing frameworks show promise in addressing

the challenges of script maintenance for dynamic web

applications. Moreover, regression testing can benefit

greatly from automation, especially when using parallel

execution methods to reduce testing time. This study

provides valuable insights for developers and testers in

choosing the appropriate automation tool, aiming to

optimize testing efficiency, reduce costs, and accelerate the

software development lifecycle.

REFERENCES

[1] Y. Wang, M. V. Mäntylä, Z. Liu, and J. Markkula,

“Test automation maturity improves product

quality—Quantitative study of open source projects

using continuous integration,” J. Syst. Softw., vol.

188, p. 111259, 2022, doi:

10.1016/j.jss.2022.111259.

[2] A. S. Verma, A. Choudhary, and S. Tiwari, “Software

Test Case Generation Tools and Techniques: A

Review,” Int. J. Math. Eng. Manag. Sci., vol. 8, no. 2,

pp. 293–315, 2023, doi:

10.33889/ijmems.2023.8.2.018.

[3] D. Amalfitano, S. Faralli, J. C. R. Hauck, S.

Matalonga, and D. Distante, “Artificial Intelligence

Applied to Software Testing: A Tertiary Study,”

ACM Comput. Surv., vol. 56, no. 3, 2023, doi:

10.1145/3616372.

[4] N. Islam, “A Comparative Study of Automated

Software Testing Tools,” Culminating Proj. Comput.

Sci. Inf. Technol., vol. 9, no. 19, pp. 9211–9219,

2016.

[5] E. EROL and S. SENAN, “A Comparative Study for

Evaluating Automated Software Testing Tools,”

Bilişim Teknol. Derg., vol. 15, no. 3, pp. 301–316,

2022, doi: 10.17671/gazibtd.1057380.

[6] N. Anwar and S. Kar, “Review Paper on Various

Software Testing Techniques & Strategies,” Glob. J.

Comput. Sci. Technol., vol. 19, no. 2, pp. 43–49,

2019, doi: 10.34257/gjcstcvol19is2pg43.

[7] C. Ragkhitwetsagul, J. Krinke, M. Choetkiertikul, T.

Sunetnanta, and F. Sarro, Adoption of automated

software engineering tools and techniques in

Thailand, vol. 29, no. 4. 2024. doi: 10.1007/s10664-

024-10472-6.

[8] J. J. Li, A. Ulrich, X. Bai, and A. Bertolino,

“Advances in test automation for software with

special focus on artificial intelligence and machine

learning,” Softw. Qual. J., vol. 28, no. 1, pp. 245–248,

2020, doi: 10.1007/s11219-019-09472-3.

[9] Arun Kumar Arumugam, “Software Testing

Techniques New Trends,” Int. J. Eng. Res., vol. V8,

no. 12, pp. 708–713, 2019, doi:

10.17577/ijertv8is120318.

[10] G. Murazvu, S. Parkinson, S. Khan, N. Liu, and G.

Allen, “A Survey on Factors Preventing the Adoption

of Automated Software Testing: A Principal

Component Analysis Approach,” Software, vol. 3,

no. 1, pp. 1–27, 2024, doi: 10.3390/software3010001.

[11] D. S. Battina, “Artificial Intelligence in Software Test

Automation: A Systematic Literature Review,”

JETIR, vol. 6, no. 12, pp. 181–192, 2019, doi:

10.5220/0009417801810192.

[12] N. G. Berihun, C. Dongmo, and J. A. Van der Poll,

“The Applicability of Automated Testing

Frameworks for Mobile Application Testing: A

Systematic Literature Review,” Computers, vol. 12,

no. 5, 2023, doi: 10.3390/computers12050097.

[13] M. Hanna, A. Elsayed, and M.-S. M., “Automated

Software Testing Frameworks: A Review,” Int. J.

Comput. Appl., vol. 179, no. 46, pp. 22–28, 2018, doi:

10.5120/ijca2018917171.

[14] Hussein Mohammed Al, M. Y. Hamza, and T. A.

Rashid, “A Comprehensive Study on Automated

Testing with The Software Lifecycle,” J. Duhok

Univ., vol. 26, no. 2, pp. 613–620, 2023, doi:

10.26682/csjuod.2023.26.2.55.

[15] F. N. Musthafa, S. Mansur, and A. Wibawanto,

“Automated Software Testing on Mobile

Applications: A Review with Special Focus on

 International Journal of Innovations In Science Engineering And Management

20 http://ijisem.com

Android Platform,” Int. Conf. Adv. ICT Emerg. Reg.,

vol. 36, no. 3, pp. 1–4, 2020, doi:

10.1145/1968587.1968601.

[16] Ashritha S and Padmashree T, “Machine Learning for

Automation Software Testing Challenges, Use Cases

Advantages & Disadvantages,” Int. J. Innov. Sci. Res.

Technol., vol. 5, no. 9, 2020, [Online]. Available:

www.ijisrt.com

[17] N. U. Ansari and P. Richhariya, “Deep Hybrid

Intelligence : CNN-LSTM for Accurate Software

Bug Prediction,” Int. J. Innov. Sci. Eng. Manag., pp.

26–33, 2024, doi: 10.69968//ijisem.2024v3i426-33.

[18] A. Banga and R. Arora, “Advancements in

Automation Testing Optimization : A

Comprehensive Review of Recent Techniques and

Trends,” Int. J. Sci. Res. Sci. Eng. Technol., pp. 344–

355, 2024.

[19] N. H. Kumar and S. Rodda, “Comparative Review on

Automated Test Failure Detection and Healing

Tools,” SSRG Int. J. Electr. Electron. Eng., vol. 12,

no. 2, pp. 113–123, 2025, doi:

10.14445/23488379/IJEEE-V12I2P113.

[20] R. Samli and Z. ORMAN, “A Comprehensive

Overview of Web-Based Automated Testing Tools,”

İleri Mühendislik Çalışmaları ve Teknol. Dergisi, vol.

4, no. 1, pp. 13–28, 2023.

[21] A. Malik and A. Mehta, “Automation Testing-a

Review,” Int. Res. J. Mod. Eng. Technol. Sci., no. 06,

pp. 2582–5208, 2022, [Online]. Available:

www.irjmets.com

[22] S. K. Alferidah and S. Ahmed, “Automated Software

Testing Tools,” Int. Conf. Comput. Inf. Technol.

ICCIT 2020, no. September, 2020, doi:

10.1109/ICCIT-144147971.2020.9213735.

[23] H. V. Gamido and M. V. Gamido, “Comparative

review of the features of automated software testing

tools,” Int. J. Electr. Comput. Eng., vol. 9, no. 5, pp.

4473–4478, 2019, doi: 10.11591/ijece.v9i5.pp4473-

4478.

[24] M. A. Umar and C. Zhanfang, “A Study of

Automated Software Testing: Automation Tools and

Frameworks,” Int. J. Comput. Sci. Eng., vol. 8, no.

06, pp. 217–225, 2019, doi:

10.5281/zenodo.3924795.

[25] F. A. K. P. G. Sutapa, S. S. Kusumawardani, and A.

E. Permanasari, “A Review of Automated Testing

Approach for Software Regression Testing,” IOP

Conf. Ser. Mater. Sci. Eng., vol. 846, no. 1, 2019, doi:

10.1088/1757-899X/846/1/012042.

[26] K. Sneha and G. M. Malle, “Research on Software

Testing Techniques and Software Automation

Testing Tools,” Int. Conf. Energy, Commun. Data

Anal. Soft Comput., pp. 77–81, 2017.

