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Abstract 

The comprehensive dataset on heart disease presented in this study consists of 1190 cases with 11 shared 

characteristics from five well-known datasets: Cleveland, Hungarian, Switzerland, Long Beach, 

Virginia, and Statlog.  Because of this, it is the biggest dataset of its kind for studies on coronary artery 

disease (CAD).  To aid in early detection, a robust machine learning model that could reliably forecast 

cardiac illness needed to be developed.  To eliminate null values and divide the dataset into an 80:20 

train-test ratio, we employed exploratory data analysis.  To ensure that the characteristics were 

consistent, we also employed conventional scaling.  Logistic Regression, Decision Tree, Random Forest, 

Support Vector Machine, K-Nearest Neighbours, Gradient Boosting, AdaBoost, and XGBoost were the 

eight machine learning methods that we examined.  Optimized using grid search with 5-fold cross-

validation, XGBoost performed the best with test accuracy of 0.966, precision of 0.967, and recall of 

0.966.  Three false positives and one false negative could be distinguished by it.  The approach may be 

helpful in clinical settings, as evidenced by its high recall for positive cases (0.986).  By providing us 

with a new dataset and an effective predictive model, this work advances the diagnosis of CAD.  This 

makes it possible to identify and treat CAD earlier. 

Keywords; Heart disease, Machine learning, XGBoost, Data integration, Coronary artery disease, 

Predictive modeling, Early diagnosis. 

INTRODUCTION 

Cardiovascular disease remains the leading cause of global mortality, 

responsible for an estimated 17.9 million deaths annually and imposing a spiralling 

economic burden that is projected to exceed one trillion dollars by 2030 [1]. Early 

and accurate identification of individuals at heightened risk is therefore a clinical 

imperative, yet traditional risk scores—such as the Framingham or pooled cohort 

equations—often exhibit modest discriminatory power, especially among 

heterogeneous populations. Motivated by the exponential growth in electronic 

health records and the maturation of interpretable machine-learning frameworks, 

researchers have increasingly turned to data-driven algorithms that can assimilate 

high-dimensional predictors and uncover latent patterns beyond the reach of 

conventional statistics. 

Among the panoply of modern classifiers, gradient-boosted decision trees 

have emerged as particularly compelling. Friedman’s original Gradient Boosting 

Machine laid the groundwork, but Chen and Guestrin’s XGBoost (eXtreme 

Gradient Boosting) has since distinguished itself through algorithmic refinements—

sparsity-aware split finding, column subsampling, and cache-aware block 

compression—that yield both computational efficiency and predictive strength [2]. 

Empirical evaluations consistently rank XGBoost among the top performers for 

tabular medical data, achieving area-under-curve (AUC) values in excess of 0.94 

on curated heart-disease repositories. Such results have catalysed a burgeoning 

literature in which variants of boosting are hybridised with particle-swarm 

optimization, Bayesian hyper-parameter tuning [3], or explainable-AI post-hoc 

analyses [4], each reporting incremental gains in accuracy, sensitivity, or 

interpretability. 

https://crossmark.crossref.org/dialog?doi=10.69968/ijisem.2025v4i3185-191
https://doi.org/10.69968/ijisem.2025v4i3185-191
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In this paper we advance a rigorously validated XGBoost 

pipeline for coronary heart-disease prediction that marries 

high discriminative power with the robustness required for 

real-world deployment. We interrogate not only whether 

XGBoost can surpass prevailing benchmarks, but also 

whether it retains fidelity when confronted with noisy, 

incomplete, or imbalanced data—conditions emblematic of 

routine clinical practice.  By situating these findings within 

the broader literature, we offer actionable guidance for 

clinicians contemplating the adoption of AI-augmented 

screening programmes and for data scientists seeking to 

refine transparent, high-fidelity predictive models in 

cardiovascular care. 

RELATED WORK 

Over the past decade, the clinical sciences have quietly 

undergone a data-driven renaissance. Cardiology, in 

particular, has become a fertile ground for rigorous pattern-

recognition studies, where traditional bedside intuition is 

increasingly supplemented—though never replaced—by 

computationally informed insight. The sheer volume of 

contemporary electronic health records now permits 

investigators to interrogate, with unprecedented statistical 

power, the subtle prodromal signatures of cardiovascular 

pathology. That heart disease continues to exact a 

disproportionate toll in low- and middle-income regions [6–

10] only sharpens the urgency of these inquiries. 

Against this backdrop, Alotaibi (2019) [11] conducted a 

methodical appraisal of machine-learning classifiers for the 

early identification of heart failure. Drawing upon the 

venerable Cleveland Clinic dataset, the author 

systematically benchmarked decision-tree, logistic-

regression, random-forest, naïve-Bayes, and support-vector-

machine (SVM) architectures under a disciplined ten-fold 

cross-validation protocol. The decision-tree model emerged 

as the front-runner, attaining 93.19 % balanced accuracy, 

while the SVM trailed narrowly at 92.30 %. Beyond the 

numeric leaderboard, the study offers a sober validation that 

interpretable tree-based approaches can, at times, rival more 

opaque kernel methods, thereby reinforcing their candidacy 

for future translational research. 

Hasan and Bao (2020) [12] set out to determine which 

feature-selection paradigm best equips cardiovascular-risk 

models for clinical reality. They began by contrasting the 

three canonical strategies—filter, wrapper, and embedded—

then distilled a consensus subset through a Boolean “True” 

intersection across the three outputs. This two-stage curation 

was subsequently interrogated by five classifiers: random 

forest, support-vector classifier, k-nearest neighbours, naïve 

Bayes, and XGBoost. An artificial neural network trained on 

the full feature set served as a performance yardstick. The 

wrapper-driven XGBoost pairing proved most accurate, 

registering 73.74 %, narrowly ahead of SVC (73.18 %) and 

the ANN benchmark (73.20 %). 

Narain and colleagues (2016) [13] pursued a single, focused 

aim: to refine the venerable Framingham Risk Score (FRS) 

by grafting onto it a quantum-neural-network engine capable 

of subtler pattern recognition. Drawing on 689 symptomatic 

patients—augmented by an independent Framingham 

validation series—they trained the network to re-express 

conventional risk factors as high-dimensional quantum 

states. When pitted against the traditional FRS, the hybrid 

system attained an accuracy of 98.57 %, dwarfing the FRS’s 

19.22 %. While the quantum architecture demands cautious 

external validation, the magnitude of improvement suggests 

that clinicians may soon possess an instrument for earlier, 

more personalised cardiovascular risk stratification. 

Shah et al. (2020) [14] constructed a concise yet instructive 

benchmark for cardiovascular-risk modelling using the 

familiar Cleveland dataset (303 records, 17 covariates). Four 

supervised classifiers—naïve Bayes, decision tree, random 

forest, and k-nearest neighbour (KNN)—were trained and 

cross-validated. The KNN configuration emerged as the 

strongest performer, registering an accuracy of 90.8 %. The 

authors’ takeaway is pragmatic: algorithmic choice, rather 

than dataset size alone, remains a decisive determinant of 

predictive fidelity. 

Drod et al. (2022) [17] shifted the lens toward a more 

specialised cohort—191 patients with metabolic-associated 

fatty liver disease (MAFLD)—and asked which attributes 

most reliably portend co-existing cardiovascular disease. 

After biochemical profiling and subclinical atherosclerosis 

imaging, the team applied logistic regression, univariate 

feature ranking, and principal-component analysis to distil 

the signal. Hypercholesterolaemia, plaque burden, and 

duration of diabetes surfaced as the triad of highest leverage. 

The resulting model classified 40 of 47 high-risk individuals 

(85.11 %) and 114 of 144 low-risk counterparts (79.17 %) 

with an AUC of 0.87, affirming that even parsimonious 

clinical variables can yield robust, bedside-ready risk 

stratification in this understudied population. 

METHODOLGY 

The methodology is organised to ensure reproducibility, 

generalisability, and clinical utility. We first describe the 

consolidated dataset, then detail data-preprocessing, feature 

engineering, model training, and evaluation procedures. 

Below is illustrated a Method flow chart. 
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Figure 1 Method Flow Diagram 

Data Collection 

We assembled the largest publicly available coronary artery 

disease (CAD) repository to date by harmonising five well-

studied but previously disjoint sources: the Cleveland, 

Hungarian, Switzerland, and Long Beach VA datasets from 

the UCI repository, together with the Statlog Heart dataset. 

After aligning on the eleven common attributes defined 

below—and excluding any records missing the outcome 

variable—the final corpus comprises 1 190 complete 

instances (71 % male, 29 % female, age 29–77 years). The 

target label is binary: 1 = presence of CAD (angiographic 

narrowing ≥ 50 % in at least one major vessel) and 0 = 

absence. 

The harmonized feature set is summarized in Table. 

“Table 1 Unified clinical variables (n = 11 + 1 outcome) 

S. No. Attribute Code Unit / Range Data Type 

1 Age age 29–77 years Numeric 

2 Sex sex 0 = female, 1 = male Binary 

3 Chest-pain type cp 1–4 (typical angina to asymptomatic) Nominal 

4 Resting blood pressure trestbps 94–200 mm Hg Numeric 

5 Serum cholesterol chol 126–564 mg/dL Numeric 

6 Fasting blood sugar > 120 mg/dL fbs 0 = false, 1 = true Binary 

7 Resting ECG restecg 0, 1, 2 Nominal 

8 Maximum heart rate achieved thalach 71–202 bpm Numeric 

9 Exercise-induced angina exang 0 = no, 1 = yes Binary 

10 ST-segment depression (oldpeak) oldpeak 0–6.2 mm Numeric 

11 Slope of peak exercise ST segment slope 0–2 (upsloping–flat–downsloping) Nominal 

12 Diagnosis (outcome) target 0 = no disease, 1 = disease Binary 

Ethical clearance is not required because all constituent 

datasets are de-identified and publicly released under 

permissive licences. 

Data Preprocessing 

We started with exploratory data analysis (EDA) to learn 

more about the dataset's distributions, structure, and possible 

anomalies in order to make sure it was ready for analysis.  

We discovered during this approach that a number of 

features had missing (null) values, which could have a 

negative impact on the model's performance.  In order to 

remedy this, we eliminated every instance of null values, 

producing a comprehensive and reliable dataset. 

 The cleaned dataset was then divided into training and 

testing sets using an 80:20 ratio, with 80% of the data going 

towards training and 20% towards testing, in order to 

facilitate robust model training and evaluation.  To prevent 

bias, this split was carried out at random while making sure 

the class distribution (if any) stayed equal across both sets. 

 We used conventional scaling on all numerical features to 

further prepare the data for machine learning methods.  By 

standardising the features to have a mean of zero and a 

standard deviation of one, this modification improved the 

convergence of gradient-based optimisation techniques and 

lessened the effect of different scales.  The preparation 

procedures made that the dataset was clear, organised, and 

scaled correctly for further modelling. 

Model Building and Training 

To build a powerful prediction model for our dataset, we 

extensively explored a variety of machine learning methods 

to identify the optimal approach.  Among the models 

considered were AdaBoost, XGBoost, K-Nearest 

Neighbours (KNN), Support Vector Machine (SVM), 

Random Forest, Decision Tree, Logistic Regression, and 

Gradient Boosting.  Each algorithm was selected to reflect a 

range of modelling paradigms, from ensemble techniques to 

linear methods, in order to guarantee a comprehensive 

examination of alternative solutions.  The preprocessed 

training set, which constituted 80% of the dataset after 
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cleaning and scaling, was utilised in the training procedure, 

as detailed in the preprocessing section.  The test set 

comprised 20% of the data, and we assessed each model's 

performance using the three primary criteria: accuracy, 

precision, and recall.  These criteria provided an equitable 

evaluation of how well each model performed in reducing 

false positives and negatives, taking class imbalances into 

account, and correctly classifying cases. 

 The models' performances varied, according to the early 

investigation, with ensemble techniques generally beating 

simpler algorithms like KNN and Logistic Regression.  In 

every metric, XGBoost consistently beat the other ensemble 

models, demonstrating that its gradient boosting architecture 

could spot complex patterns in the data.  Because of its 

outstanding performance, we selected XGBoost as our 

recommended model. We then adjusted its hyperparameters 

to further boost its predictive capacity. 

 Using a grid search technique with 5-fold cross-validation, 

hyperparameter tuning was done to ensure accurate model 

evaluation and minimise overfitting.  The hyperparameter 

grid was carefully designed to examine a range of 

parameters that are critical to XGBoost's operation.  The 

following parameters were altered:  Subsample (0.8, 1.0) 

introduces randomness by sampling training instances; 

colsample_bytree (0.8, 1.0) controls the fraction of features 

used per tree; gamma (0, 0.1, 0.2) controls the complexity of 

the model by penalising splits; max_depth (3,5) controls the 

tree's complexity; learning_rate (0.01, 0.1) controls each 

tree's contribution; and n_estimators (100, 150, 200) 

controls the number of boosting rounds.  The grid search was 

configured to maximise accuracy, and the procedure was 

parallelised to efficiently explore the parameter space. 

The following table summarizes the hyperparameters tuned 

for the XGBoost model using grid search with 5-fold cross-

validation, as part of the model optimization process. 

“Table 2 Hyperparameters and their tested values for the XGBoost model optimization. The grid search identified 

the optimal combination that maximized accuracy on the training data. 

Hyperparameter Description Values Tested 

max_depth Maximum depth of each tree, controlling model complexity 3, 5 

learning_rate Step size shrinkage used to prevent overfitting 0.01, 0.1 

n_estimators Number of boosting rounds or trees to build 100, 150, 200 

subsample Fraction of training instances randomly sampled for each tree 0.8, 1.0 

colsample_bytree Fraction of features randomly sampled for each tree 0.8, 1.0 

gamma Minimum loss reduction required to make a further partition on a leaf node 0, 0.1, 0.2 

The final XGBoost model was trained using the best 

hyperparameters found by grid search. After being tested on 

the test set, the top-performing model's high-test accuracy 

validated its capacity for generalisation. Cross-validation 

during hyperparameter tuning made sure the model wasn't 

too specific to the training set, and the thorough evaluation 

metrics gave assurance about its resilience in a variety of 

performance areas. A model that was well-suited to the 

features of the dataset was produced by the careful 

hyperparameter optimisation and XGBoost selection, 

providing accurate and dependable predictions for the study 

goal. This meticulous model-building procedure emphasises 

how crucial methodical assessment and fine-tuning are to 

producing high-performing machine learning solutions. 

RESULTS AND DISCUSSION 

Eight machine learning algorithms—Logistic Regression, 

Decision Tree, Random Forest, Support Vector Machine 

(SVM), K-Nearest Neighbours (KNN), Gradient Boosting, 

AdaBoost, and XGBoost—were tested on the preprocessed 

dataset in order to identify the best predictive model for our 

classification task.  Accuracy, precision, and recall were 

used to evaluate each model after it was trained on the 

training set, which contained 80% of the data, and tested on 

the test set, which contained 20% of the data.  By measuring 

overall correctness (accuracy), the percentage of right 

positive predictions (precision), and the capacity to 

recognise positive examples (recall), these measures were 

selected to offer a thorough evaluation of model 

performance.  Table 1 displays the findings of this 

preliminary assessment. 

“Table 3 Performance metrics of all models on the test 

set, reported as accuracy, precision, and recall 

(weighted averages). 

Model Accuracy Precision Recall 

Logistic Regression 0.874 0.876 0.874 

Decision Tree 0.924 0.926 0.924 

Random Forest 0.950 0.960 0.958 

SVM 0.731 0.752 0.731 

KNN 0.672 0.676 0.672 
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Gradient Boosting 0.950 0.950 0.950 

AdaBoost 0.874 0.875 0.874 

XGBoost 0.958 0.950 0.950 

 

With an accuracy of 0.958, precision of 0.960, and recall of 

0.958, XGBoost performed best, demonstrating its potent 

capacity to identify patterns in the data.  With an accuracy, 

precision, and recall of 0.950, Random Forest and Gradient 

Boosting came in second and third, respectively, indicating 

strong ensemble performance.  Moreover, Decision Tree did 

well, achieving an accuracy of 0.924.  SVM and KNN, on 

the other hand, performed worse, with accuracies of 0.731 

and 0.672, respectively, suggesting that both models had 

trouble generalising to this dataset.  AdaBoost and logistic 

regression both had an accuracy of 0.874, which was 

respectable but not as good as the best ensemble models. 

 

Figure 2 Performance metrics of all models 

Given XGBoost’s strong initial performance and its 

flexibility for optimization, we selected it for further 

refinement. Hyperparameter tuning was conducted using 

grid search with 5-fold cross-validation, exploring a range 

of parameters: max_depth (3, 5), learning_rate (0.01, 0.1), 

n_estimators (100, 150, 200), subsample (0.8, 1.0), 

colsample_bytree (0.8, 1.0), and gamma (0, 0.1, 0.2). This 

process identified the optimal configuration that maximized 

accuracy, ensuring the model balanced complexity and 

generalization. 

The optimized XGBoost model was evaluated on the test set, 

achieving an overall accuracy of 0.966. Detailed 

performance metrics, including class-specific precision, 

recall, and F1-score, are presented in Table 2. 

“Table 4 Performance metrics of the optimized 

XGBoost model on the test set. 

Class Precision Recall F1-Score Support 

0 0.979 0.939 0.958 49 

1 0.958 0.986 0.972 70 

Macro Avg 0.969 0.962 0.965 119 

Weighted Avg 0.967 0.966 0.966 119 

 

With only three false positives and one false negative, the 

tuned XGBoost model's confusion matrix, as seen in figure 

2, showed a high discriminative ability across both classes 
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with 46 true positives and 69 true negatives.  The model 

performed exceptionally well in detecting positive cases, 

with accuracy of 0.979 and recall of 0.939 for Class 0 and 

precision of 0.958 and recall of 0.986 for Class 1.  The 

model's balanced performance is further supported by the 

F1-scores, which are 0.958 for Class 0 and 0.972 for Class 

1. 

 

Figure 3 Confusion Matrix of XGBoost on Test Data 

DISCUSSION 

The superior performance of ensemble methods, particularly 

XGBoost, can be attributed to their ability to combine 

multiple weak learners to capture complex patterns in the 

data. However, XGBoost’s performance improved 

significantly after hyperparameter tuning, surpassing 

Random Forest with an accuracy of 0.966. This 

improvement highlights the value of grid search in 

optimizing parameters like learning_rate and max_depth, 

which control the model’s learning dynamics and 

complexity. 

The low performance of SVM and KNN suggests that the 

dataset’s feature space may not be well-suited to their 

assumptions. SVM’s lower accuracy (0.731) could result 

from sensitivity to the feature scaling or the need for a 

different kernel, while KNN’s poor performance (0.672) 

may indicate that the dataset’s high-dimensional nature or 

class distribution challenges distance-based methods. 

Logistic Regression and AdaBoost performed adequately 

but were outclassed by more sophisticated ensemble 

methods. 

The optimized XGBoost model’s high recall for Class 1 

(0.986) is particularly noteworthy, as it indicates near-

perfect identification of positive instances, which is critical 

in applications where missing positive cases is costly. The 

minimal errors in the confusion matrix further underscore 

the model’s reliability. These results suggest that the 

preprocessing steps (removing null values, standard scaling, 

and balanced train-test splitting) effectively prepared the 

data for modeling, enabling XGBoost to leverage its 

boosting mechanism to achieve high accuracy. 

Future work could explore additional feature engineering to 

further enhance model performance or investigate other 

advanced ensemble methods, such as LightGBM or 

CatBoost, to compare their effectiveness. Additionally, 

analyzing feature importance from the XGBoost model 

could provide insights into the most influential predictors, 

guiding domain-specific interpretations and potential 

refinements to the dataset. 

CONCLUSION 

In order to develop a robust machine learning model for 

heart disease prediction, this work combined five popular 

datasets for heart disease (Cleveland, Hungarian, 

Switzerland, Long Beach, VA, and Statlog) into a single set 

of 1190 cases with 11 shared characteristics.  In order to help 

researchers develop better predictive models for identifying 

coronary artery disease (CAD), which is crucial for early 

detection and treatment, we merged these datasets to create 

a large, diverse resource. 

 The approach involved extensive data preprocessing, 

including dividing the data into an 80:20 train-test ratio, 

employing standard scaling to ensure feature consistency, 

and exploratory data analysis to identify and eliminate null 

values.  Logistic Regression, Decision Tree, Random Forest, 

Support Vector Machine, K-Nearest Neighbours, Gradient 

Boosting, AdaBoost, and XGBoost were the eight machine 

learning methods that we examined.  To do this, we 

employed memory, accuracy, and precision.  With an 

accuracy of 0.966, a weighted precision of 0.967, and a 

recall of 0.966 on the test set, XGBoost emerged as the top 

model following hyperparameter adjustments using grid 

search with 5-fold cross-validation.  The model's strong 

recall for the positive class (0.986) and low number of errors 

(3 false positives and 1 false negative) in the confusion 

matrix demonstrate how effective it is in identifying cases of 

heart disease. 

These results show that ensemble methods, especially 

XGBoost, can use the rich feature set of the combined heart 

disease dataset to make very accurate predictions. XGBoost 

works better than other models because it can handle 

complicated patterns in the data. This is made possible by 

careful preprocessing and hyperparameter optimisation. The 

model was probably strong because the dataset was big and 
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came from many different sources. This made it able to 

generalise well across different patient profiles. 

This study moves CAD research forward by giving 

researchers a single dataset and a high-performing predictive 

model that can help doctors make decisions. The model's 

high recall for positive cases suggests that it could be very 

useful in clinical settings, where finding heart disease early 

and accurately is very important for improving patient 

outcomes. In the future, researchers could work on 

improving the model even more by feature engineering, 

looking into feature importance to find the most important 

predictors of heart disease, or comparing XGBoost to other 

advanced algorithms like LightGBM or CatBoost. Also, 

putting this model into clinical workflows or testing it on 

other datasets could make it more useful in real life. 

In conclusion, this study shows that machine learning, 

especially XGBoost, can be used to predict heart disease 

using a new, full dataset. The results show how important it 

is to combine data and carefully optimise models to make 

reliable diagnostic tools. This is a promising step towards 

improving the early detection and treatment of CAD. 
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