
 International Journal of Innovations In Science Engineering And Management

372 http://ijisem.com

OPEN ACCESS

Volume: 4

Issue: 3

Month: September

Year: 2025

ISSN: 2583-7117

Published: 15.09.2025

Citation:

Mrs. Elavarasi Kesavan “Software Bug

Prediction Using Machine Learning

Algorithms: An Empirical Study on

Code Quality and Reliability”

International Journal of Innovations in

Science Engineering and Management,

vol. 4, no. 3, 2025, pp. 377–381.

DOI:

10.69968/ijisem.2025v4i3377-381

This work is licensed under a Creative

Commons Attribution-Share Alike 4.0

International License

Software Bug Prediction Using Machine Learning

Algorithms: An Empirical Study on Code Quality and

Reliability

Mrs. Elavarasi Kesavan1

1Full Stack QA Architect, Company- Cognizant.

Abstract

This study examines the effectiveness of a hybrid Convolutional Neural Network (CNN) and Long Short-

Term Memory (LSTM) model for predicting software bugs, with the objective of improving code quality

and dependability. The research leverages the JM1 dataset from the PROMISE Software Engineering

Repository and utilizes sophisticated preprocessing approaches, including Borderline-SMOTE,

SMOTETomek, RobustScaler, Yeo-Johnson transformation, and Recursive Feature Elimination, to

mitigate class imbalance and feature redundancy. The CNN-LSTM model attained a validation accuracy

of 98.10%, a precision of 91.42%, and a recall of 99.53%, exhibiting a minimal false negative rate and

indicating great sensitivity in detecting defect-prone modules. The results underscore the model's

capacity to identify spatial and sequential patterns in software metrics, providing a reliable instrument

for early fault identification. This work enhances software engineering by confirming deep learning's

efficacy in defect prediction, offering practical insights for developers, and delineating future research

avenues for cross-project generalization and model optimization.

Keywords; Software Bug Prediction, Machine Learning, Deep Learning, CNN-LSTM, Code Quality,

Software Reliability, Feature Selection, Class Imbalance, Software Metrics, Defect Detection.

INTRODUCTION

Software systems are essential to contemporary technological progress,

driving vital applications in sectors such as healthcare, finance, and transportation.

Nonetheless, software bugs—defects or imperfections in code—can undermine

system reliability, resulting in performance deterioration, security weaknesses, or

catastrophic failures. The growing intricacy of software systems has heightened the

difficulty of maintaining code quality, rendering human bug identification

ineffective and susceptible to errors. Consequently, automated methodologies for

predicting software defects have garnered considerable interest in software

engineering research. Machine learning (ML) algorithms, capable of discerning

patterns from previous data, provide effective solutions for forecasting software

errors, thereby enhancing code quality and system dependability.

 The importance of software bug prediction is in its ability to lower

development expenses, improve software quality, and alleviate dangers linked to

defective code. Identifying defect-prone modules early in the development

lifecycle enables developers to spend resources efficiently, priorities testing efforts,

and produce resilient software solutions. Conventional bug prediction techniques

frequently depended on static code metrics, such lines of code, cyclomatic

complexity, or coupling, to assess the probability of defects. Nonetheless, these

methodologies often failed to elucidate the intricate linkages inside software

systems. Machine learning methodologies, such as decision trees, random forests,

support vector machines, and neural networks, have exhibited enhanced efficacy in

modelling intricate patterns in software metrics, resulting in more precise

predictions [1].

https://crossmark.crossref.org/dialog?doi=10.69968/ijisem.2025v4i3377-381
https://doi.org/10.69968/ijisem.2025v4i3377-381

International Journal of Innovations In Science Engineering And Management

https://ijisem.com 373

Recent research have investigated the utilization of machine

learning in bug prediction with significant results.

Lessmann et al. performed an extensive benchmarking

research that compared several machine learning algorithms

for defect prediction, emphasizing the efficacy of ensemble

approaches such as random forests in attaining high

prediction accuracy [2]. Menzies et al. underscored the

significance of feature selection in augmenting the efficacy

of ML-based bug prediction models, demonstrating that

pertinent code metrics substantially bolster predictive

capability [3]. These studies highlight the capacity of

machine learning to overcome the constraints of

conventional methods, especially in managing extensive,

high-dimensional software data.

 Notwithstanding these gains, obstacles persist in the realm

of software bug prediction. The heterogeneity of software

projects, differing coding methodologies, and the fluidity of

development environments hinder the generalizability of

machine learning models. Furthermore, the quality of

training data, including noise and class imbalance, can

profoundly affect model performance [4]. Recent studies

have investigated deep learning methodologies, including

convolutional neural networks and recurrent neural

networks, to capture temporal and structural connections in

code, with promising outcomes in enhancing prediction

accuracy [5]. Nevertheless, these methodologies sometimes

need considerable computer resources and extensive

labelled datasets, presenting practical obstacles to wider use.

 This empirical study seeks to examine the effectiveness of

several machine learning methods in forecasting software

defects, emphasizing their influence on code quality and

dependability. This research aims to uncover the best

effective methods for defect prediction by analyzing a varied

array of software variables and using several machine

learning models, while also assessing their performance

across different software projects. The research examines

the significance of feature engineering and data pretreatment

in improving model correctness. This research enhances the

understanding of automated bug prediction by conducting a

comparative examination of classic and sophisticated

machine learning algorithms, offering practical insights for

software developers and quality assurance teams.

RELATED WORK

[6] This paper investigates the estimate of maintenance work

in software engineering, emphasizing machine learning

approaches for open-source software maintenance effort

estimation (O-MEE). Although optimizing tuning

parameters (TP) is recognized to improve machine learning

performance, its effect on O-MEE bug resolution prediction

has yet to be well investigated. This study empirically

assesses the grid search TP methodology on support vector

machines, k-Nearest Neighbor, and Random Tree classifiers

utilizing datasets from Apache, Eclipse JDT, and Eclipse

Platform. Eighteen machine learning classifiers were

created, illustrating that optimizing true positives enhances

performance relative to default configurations.

 [7] This research underscores the necessity of enhancing

software development methodologies within the information

technology sector. The author presents six object-oriented

design metrics, tested with empirical C++ and Smalltalk

data, to evaluate their independence and effectiveness.

These indicators assist managers in assessing software

quality, pinpointing areas requiring further testing or

redesign, and improving process efficiency. The object-

oriented metrics package facilitates cost and time efficiency

by enhancing software development oversight.

 [8] This research illustrates how systematic mining detects

software modules susceptible to errors. Software defects are

a significant cause of quality deterioration, and bug

repositories function as essential data sources for monitoring

successes and failures. The bug database offers extensive

insights into software problems, facilitating quality

enhancement.

 [9] Wang et al. (2011) underscore the essential importance

of feature selection in data mining for software fault

prediction. Feature selection improves classification models

for defect and risk prediction by eliminating duplicate data.

The research employs six filter-based rankers on three

extensive software projects, including SVM, NB, KNN, LR,

and MLP classifiers. AUC performance measures indicate

that the quality of the dataset substantially influences ranker

efficacy. The authors propose additional trials utilizing

varied datasets and application domains, integrating

contradicting evidence in later investigations.

 10 This study utilizes the Levenberg-Marquardt (LM)

neural network approach to forecast software problems early

in the development lifecycle, hence minimizing testing and

total project expenses. The study use object-oriented (OO)

and Chidamber and Kemerer (CK) metrics from the

PROMISE repository to evaluate neural network predictions

utilizing polynomial functions and the LM technique. The

results demonstrate a high precision in flaw identification,

validating the model's efficacy.

 [11] This paper promotes the use of a succinct collection of

essential software metrics for fault prediction. A Bayesian

network is utilized to examine the correlation between

 International Journal of Innovations In Science Engineering And Management

374 http://ijisem.com

metrics and fault susceptibility, integrating Source Code

Quality Metrics and the Number of Researchers with

PROMISE repository data. Nine datasets from the

PROMISE repository were examined, indicating that RFC,

LOC, and LOCQ measures are more efficacious in

mitigating fault proneness compared to NOC and DIT.

Subsequent research will investigate supplementary

measures to enhance defect prediction.

 [12] This study highlights the significance of software

testing for mission-critical, safety-critical, and business-

critical applications. Anticipating fault-prone and non-fault-

prone modules prior to testing is a cost-efficient approach.

Misclassifying functional modules as defective escalates

expenses owing to redundant testing, whereas

misclassifying defective modules as functional poses a

danger of catastrophic failures. The research presents an

innovative failure prediction technique that diminishes false

alarm rates and enhances detection accuracy, hence

improving software dependability. This document also

examines contemporary data mining methodologies for

defect prediction, highlighting their significance in prompt

problem identification and dependable software

development.

 [13] This study examines software quality prediction

utilizing classifiers such as Logistic Regression, Decision

Trees, Naive Bayes, K-Nearest Neighbors, One Rule,

regression analysis, and neural networks across four

datasets, integrating Halstead, McCabe, Line Count,

operator, and branch count metrics. It examines research

enquiries on faulty data, predictive algorithms, data

attributes, and algorithmic combinations. Assessment using

mean absolute error indicates that instance-based learning

and 1R surpass alternative methodologies. The integration

of machine learning with Principal Component Analysis

(PCA) does not enhance accuracy, indicating a prudent

application of PCA in defect prediction models.

 [14] This paper examines biases in software fault

prediction, encompassing restricted dataset comparisons,

inter-study model comparisons, and inadequate statistical

validation. Twenty-two classifiers, including statistical,

closest neighbor, neural network, support vector, decision

tree, and ensemble methodologies, were evaluated on 10

NASA metrics datasets (CM1, KC1, KC3, PC1, PC2, PC3,

PC4, KC4, MW1, JM1, AR). The AUC-ROC

measurements and the Nemenyi statistical test reveal no

substantial performance disparities across classifiers,

effectively correlating static code characteristics with

software defects.

 [15] The researchers advocate for the use of topic models to

enhance software issue triaging. The vector space model

illustrates the various phrases and occurrences of software

defects. Nonetheless, it has difficulties with polysemous and

synonymous phrases, since developers may employ varying

language for same concepts or the same terms for disparate

meanings based on context.

 [16] Bug triaging has encountered growing difficulties with

nomenclature. Topic modelling resolves this by producing

topics derived from words in documents, efficiently

managing challenges associated with term synonyms and

polysemy.

 [17] Numerous subject modelling methodologies, including

Latent Dirichlet Allocation (LDA), Probabilistic Latent

Dirichlet Allocation (PLDA), Latent Semantic Analysis, and

Pachinko Allocation Model (PAM), are presented in the

literature. Chen et al. analyzed 167 papers to deliver a

thorough overview of effective topic modelling applications

in software repositories.

 [18] LDA is extensively utilized in software engineering to

alleviate the effects of unclear terminology in activities such

as subject filtering, feature allocation, developer

identification, and component recommendation for problem

reports. Topic models associate phrases in bug reports with

several categories, each denoting a feature or part of

software problems attributed to distinct engineers.

THEORETICAL FRAMEWORK

a. Foundations of Software Bug Prediction

Software bug prediction is an essential method in software

engineering designed to detect components susceptible to

defects, hence improving code quality and system stability.

This study is fundamentally based on software quality

assurance, which prioritises the avoidance and early

identification of flaws to guarantee resilient software

systems. Software bugs, characterised as faults or defects in

code, may result in functional failures, security

vulnerabilities, or performance deterioration [19]. Boehm’s

Software Quality Characteristics offer a paradigm for

evaluating software dependability based on properties such

as correctness, maintainability, and testability. These

characteristics are measured using software metrics—such

as cyclomatic complexity, code churn, and coupling—which

act as indicators of fault probability. This work utilises these

indicators as fundamental components for machine learning

(ML)-driven bug prediction, according to the premise that

early defect detection enhances development productivity

and software dependability.

International Journal of Innovations In Science Engineering And Management

https://ijisem.com 375

b. Machine Learning in Defect Prediction

The use of machine learning for software bug prediction is

based on data-driven modelling, wherein algorithms discern

patterns from previous defect data to forecast future defects.

Supervised learning, a fundamental paradigm in machine

learning, is particularly pertinent as it entails training models

using labelled datasets (e.g., defective vs non-defective

modules) to categories or score software components.

Algorithms like as Decision Trees, Support Vector

Machines (SVM), and deep learning models like Long

Short-Term Memory (LSTM) networks are proficient in

identifying intricate, non-linear correlations in software

metrics, outperforming conventional statistical techniques

[20]. The theoretical foundation of machine learning in this

context is derived from information theory, namely the

notion of entropy, which informs feature selection to

pinpoint the best predictive metrics. By minimizing entropy,

machine learning models diminish noise and improve

prediction accuracy, as demonstrated by research indicating

high precision (up to 0.96) with optimized feature sets [21].

c. Integration with Software Quality

The amalgamation of machine learning with software

quality assurance constitutes the theoretical foundation of

this research. Software quality models highlight

quantifiable characteristics that machine learning may

implement via predictive analytics. McCall’s Quality Model

emphasises dependability and maintainability as essential

elements, which ML-based bug prediction effectively

tackles by pinpointing high-risk modules for focused testing

[22]. The notion of defect proneness, examined by Kim et

al., offers a theoretical framework for comprehending the

relationship between code attributes and problem

prevalence, allowing ML models to focus on error-prone

regions [23]. This paper asserts that machine learning

methods, by modelling these connections, can improve

software quality by decreasing defect density and enhancing

system dependability, providing a data-driven solution to

conventional software engineering issues.

d. Rationale for Machine Learning Approaches

The selection of machine learning techniques for bug

prediction is theoretically supported by their capacity to

manage high-dimensional, heterogeneous software data. In

contrast to conventional approaches that depend on linear

assumptions, machine learning models such as Random

Forests and LSTM networks effectively capture temporal

and structural connections in code, as evidenced by Wang et

al., who attained enhanced accuracy using deep learning for

semantic feature extraction [24]. The iterative process of

machine learning model training corresponds with the

software development lifecycle, wherein ongoing input from

defect data enhances predictions. This research advances

these ideas by mixing supervised learning with feature

engineering approaches to create strong bug prediction

models, thereby enhancing the theoretical discussion on the

amalgamation of machine learning and software quality

assurance.

METHODOLGY

This study adopts a systematic methodology to evaluate the

effectiveness of machine learning algorithms in predicting

software defects, with a focus on enhancing code quality and

reliability. As illustrated in Figure 1, the process

encompasses data collection, preprocessing, model

development, and performance evaluation, leveraging

empirical data to derive practical insights. The following

subsections detail each phase of the research approach,

ensuring methodological rigor and reproducibility.

Figure 1 Methodology Flow

Figure 1 Alt Text: A detailed flowchart illustrating the

software bug prediction pipeline, including preprocessing

steps like scaling and SMOTE, followed by a CNN-LSTM

model and evaluation using classification metrics.

 International Journal of Innovations In Science Engineering And Management

376 http://ijisem.com

i. Data Collection

The PROMISE Software Engineering Repository, a well-

known resource for software engineering research,

especially in defect prediction (Sayyad Shirabad), provided

the dataset for this work [25]. A collection of publicly

accessible datasets including software metrics and defect

information taken from actual software projects is offered

via the PROMISE repository. We use the CM1 dataset for

this analysis, which comprises 498 examples of software

modules from a NASA project and is characterized by 22

metrics, including Halstead measures (e.g., volume, effort),

cyclomatic complexity, and lines of code (LOC). By

designating each instance as either buggy or non-buggy,

supervised learning for defect prediction is made possible.

Because of its extensive metric coverage and proven usage

in earlier research, the CM1 dataset was chosen to ensure

comparison with previous investigations [26]. Furthermore,

the dataset's class imbalance—which includes a greater

percentage of non-buggy instances—reflects real-world

situations, which makes it appropriate for testing machine

learning algorithms in difficult situations.

ii. Data Preprocessing

To guarantee data quality and compatibility with machine

learning (ML) techniques for software bug prediction, the

JM1 dataset from the PROMISE Software Engineering

Repository must be preprocessed. A number of methodical

preparation procedures were used to resolve issues with

missing values, inconsistent data types, and class imbalance

in the JM1 dataset, which included 10,885 instances with 22

software metrics and a binary defect label (buggy or non-

buggy).

 A first study of the dataset, which was first imported using

Python's Pandas module, showed that some columns—most

notably uniq_Op, uniq_Opnd, total_Op, total_Opnd, and

branchCount—had missing values. Using Pandas'

to_numeric function with error coercion to handle non-

numeric data, these columns were transformed from object

to numeric types (float64), giving incorrect entries null

values. The dropna technique was then used to exclude rows

with missing values, lowering the dataset to guarantee

consistency and completeness because missing data might

negatively impact the performance of ML models.

 The dataset was divided into features (X) and the target

variable (y), where y stands for the binary defect label (0 for

non-buggy, 1 for buggy), in order to get it ready for

modelling. Analysis of the class distribution showed a

notable imbalance, with non-problematic instances (about

80%) outnumbering buggy ones (about 20%). A

combination of oversampling and undersampling techniques

was used to address this imbalance, which can bias ML

models towards the majority class. The Borderline-SMOTE

algorithm was used to generate synthetic samples that

oversample the minority class (buggy instances), and

SMOTETomek, which combines SMOTE with Tomek

Links to remove noisy majority class samples close to the

decision boundary [27]. Post-sampling analysis revealed a

nearly equal distribution of classes, confirming that this

strategy balanced the class distribution.

 To normalize the range of software measures that differ in

scale (e.g., LOC vs. cyclomatic complexity), feature scaling

was done. The feature set was transformed using scikit-

learn's RobustScaler, which ensures robust model

performance by being less sensitive to outliers than

StandardScaler. Furthermore, skewness in the feature

distribution was addressed using the Yeo-Johnson

PowerTransformer, which improved the data's applicability

for machine learning algorithms—especially deep learning

models like LSTM, which are sensitive to non-normal

distributions.

 Lastly, the top ten most predictive characteristics were

chosen by employing Recursive Feature Elimination (RFE)

with a Random Forest Classifier as the estimator. According

to earlier research highlighting the significance of feature

selection in defect prediction, this step decreased the

complexity of the dataset, reducing the danger of overfitting

and enhancing computing efficiency [21]. To prepare it for

further model construction, the preprocessed data—which

included scaled, transformed, and balanced features—was

then divided into training (70%) and testing (30%) sets using

a random seed for repeatability.

iii. Model Building and Training

development and assessing a machine learning (ML) model

is the main goal of the model development and training

phase. In order to capture both spatial and sequential

patterns in software metrics, this study uses a hybrid deep

learning architecture that combines Convolutional Neural

Networks (CNN) and Long Short-Term Memory (LSTM)

networks. This approach supports the goal of improving

code quality and reliability through precise bug prediction.

Model Architecture

Using Python's TensorFlow and Keras packages, a

sequential deep learning model was created to analyse the

high-dimensional, preprocessed feature set, which included

the top ten metrics chosen by Recursive Feature Elimination

International Journal of Innovations In Science Engineering And Management

https://ijisem.com 377

(RFE). The following layers as shown in figure 2 make up

the model architecture:

Figure 2 Model Architecture

Figure 2 Alt Text: Block diagram of the CNN-LSTM model

structure starting with Conv1D and MaxPooling layers,

followed by an LSTM layer, Dense layer, and final Output

layer for binary classification

Convolutional Layer: Convolutional Layer: To extract

local patterns from the input features, a 1D Convolutional

layer (Conv1D) with 16 filters and a kernel size of two was

put into place. It used the ReLU activation function. Finding

spatial links in software measurements, such as correlations

between error proneness and code complexity, is a good fit

for this layer.

 Max Pooling Layer: To improve the model's capacity to

generalize across a variety of software data, a

MaxPooling1D layer with a pool size of two was included.

This layer reduced dimensionality and computational

complexity while maintaining important characteristics.

 LSTM Layer: To capture sequential dependencies in the

feature set and represent the temporal aspect of software

development processes, including code churn over time, an

LSTM layer of eight units was included. Long-term

dependencies are very well-modeled by LSTMs.

 Dense Layers: To provide non-linearity, a dense layer of

eight units and a hyperbolic tangent (tanh) activation

function was used. A 20% rate Dropout layer was then added

to avoid overfitting by randomly deactivating neurones

during training. The last output layer generates a binary

classification (buggy or non-buggy) using a single unit and

sigmoid activation.

Input Reshaping: To meet the needs of the Conv1D layer

and guarantee compliance with the model's design, the input

data was reshaped into a 3D format (samples, features, 1).

 In order to tackle the complexity of software defect

prediction, this hybrid CNN-LSTM architecture was

selected because it combines the advantages of CNNs in

feature extraction with LSTMs' ability to handle sequential

data.

Training Process

As explained in the Data Preprocessing part, the model was

trained on the resampled training dataset, which was

balanced using SMOTETomek and Borderline-SMOTE to

resolve class imbalance. Thirty percent of the data was

utilized as the test set for assessment, while the remaining

seventy percent was used as the training set to fit the model.

The Adam optimizer, a popular method for its adaptable

learning rate and effectiveness in deep learning applications,

was used to assemble the model. In order to optimize the

model for binary classification and meet the study's goal of

differentiating between buggy and non-buggy modules, the

binary cross-entropy loss function was used. A batch size of

128 was used for training across 7 epochs, balancing model

convergence and computing efficiency. Three assessment

metrics—binary accuracy, precision, and recall—that are

specified as follows were used to track the model's

performance:

Binary Accuracy: The percentage of occurrences that are

correctly categorized as either bugged or not is known as

binary accuracy.

Precision: A measure of the model's ability to prevent false

positives, calculated as the ratio of genuine positive

predictions to total positive predictions.

Recall: The model's sensitivity to identifying problematic

modules is indicated by the ratio of true positive predictions

to all real positives.

These measures were selected because they are useful for

assessing defect prediction models, especially when datasets

are unbalanced. During training, the test set was validated

to track generalization performance and identify any

possible overfitting..

Implementation Details

TensorFlow 2.x and scikit-learn were used to preprocess and

evaluate the model in a Jupyter notebook environment. To

 International Journal of Innovations In Science Engineering And Management

378 http://ijisem.com

guarantee reliable input quality, the training procedure made

use of the preprocessed data, which had been scaled using

RobustScaler, transformed using Yeo-Johnson, and feature-

selected using RFE. For repeatability, the random seed was

set to 42, which was in line with the train-test split during

the preprocessing stage. In order to provide a thorough

understanding of classification performance, the model's

performance was assessed on the test set. The results were

visualised using a confusion matrix to evaluate true

positives, true negatives, false positives, and false negatives.

 By combining cutting-edge deep learning algorithms to

handle the difficulties of software bug prediction with

proven procedures in defect prediction research, this

approach guarantees a rigorous and repeatable methodology.

RESULTS AND DISCUSSION

The performance measures for the training and validation

sets—accuracy, loss, precision, and recall—as well as a

confusion matrix are shown in this part to give a thorough

evaluation of the model's predictive power. These findings

support the study's goals of evaluating how well machine

learning algorithms improve code quality and dependability,

with an emphasis on the hybrid CNN-LSTM architecture's

capacity to identify software modules that are prone to

defects.

Model Performance Metrics

The binary cross-entropy loss function and three important

metrics binary accuracy, precision, and recall were used to

train and assess the CNN-LSTM model. These measures,

which are essential for realistic defect prediction, were

chosen to reflect the model's overall accuracy, its capacity to

reduce false positives, and its sensitivity to identifying

problematic modules, respectively. The balanced dataset

acquired via Borderline-SMOTE and SMOTETomek

resampling approaches was used for the training, which was

carried out across 7 epochs with a batch size of 128. Table

1 provides a summary of the training and validation sets'

performance indicators.

Table 1 Performance Metrics of the CNN-LSTM Model

on Training and Validation Sets

Metric Training Set Validation Set

Accuracy 0.9890 0.9810

Loss 0.0318 0.0504

Precision 0.9852 0.9142

Recall 0.9930 0.9953

With a training accuracy of 98.90%, the model demonstrated

a high percentage of properly categorized modules, whether

they were bugged or not. Effective optimization during

training is demonstrated by the training loss of 0.0318,

where the model converges to a low error rate. The recall of

99.30% shows remarkable sensitivity in identifying almost

all problematic occurrences in the training set, while the

accuracy of 98.52% shows the model's ability to correctly

identify troublesome modules while minimizing false

positives. As shown in Figure 3, the model exhibited strong

generalization on the validation set, achieving high accuracy

(98.10%) despite a slightly elevated loss (0.0504). The

validation recall of 99.53% indicates near-complete

detection of defective modules critical for practical defect

prediction while the validation precision of 91.42% reflects

a marginal rise in false positives compared to the training

set.

Figure 3 Performance Metrics of the CNN-LSTM Model on Training and Validation Sets

0 0.2 0.4 0.6 0.8 1

Accuracy

Precision

Recall

Loss

0.989

0.9852

0.993

0.0318

0.981

0.9142

0.9953

0.0504

Performance Metrics of the CNN-LSTM Model on Training and Validation Sets

Validation Set Training Set

International Journal of Innovations In Science Engineering And Management

https://ijisem.com 379

Figure 3 Alt Text: Bar graph visualizing the CNN-LSTM

model’s training and validation performance metrics loss,

recall, precision, and accuracy demonstrating high

accuracy and recall with low validation loss.

Confusion Matrix Analysis

A confusion matrix was created for the validation set in

order to assess the model's classification performance in

more detail, as seen in Figure 4. The matrix offers insights

about the model's capacity to differentiate between buggy

and non-buggy modules by providing a thorough breakdown

of true positives (TP), true negatives (TN), false positives

(FP), and false negatives (FN).

Figure 4 Confusion Matrix

Figure 4 Alt Text: Confusion matrix showing the number of

true positives, false positives, true negatives, and false

negatives achieved by the CNN-LSTM model on the

validation dataset.

Table 2 Confusion Matrix for CNN-LSTM Model on

Validation Set

Actual \ Predicted Non-Buggy (0) Buggy (1)

Non-Buggy (0) 2573 (TN) 59 (FP)

Buggy (1) (FN) P)

The model showed significant discriminative capability,

properly classifying 629 buggy modules (TP) and 2573 non-

buggy modules (TN), according to the confusion matrix.

The model missed extremely few defective modules, as

evidenced by the low number of false negatives (3), which

is consistent with the high recall of 99.53%. The reduced

validation precision (91.42%) is a result of the 59 false

positives, which point to a minor propensity to overpredict

problematic modules as seen in Table 2. Previous studies

have observed that this trade-off between accuracy and

recall is typical in unbalanced datasets, even after

resampling [27]. Prioritizing testing efforts and enhancing

code quality depend on the model's ability to detect defect-

prone modules, which is supported by the high true positive

rate.

 In conclusion, the CNN-LSTM model performs

exceptionally well in predicting software bugs, exhibiting

excellent recall, accuracy, and precision across training and

validation datasets. The model's practical value in

improving code quality and dependability is further

supported by the confusion matrix, which further validates

the model's capacity to properly detect defective modules

with few missed problems. These findings offer a solid basis

for addressing the study's goals and establish the framework

for the discussion section that follows.

CONCLUSION

A hybrid CNN-LSTM model for software bug prediction

was evaluated in this study using the JM1 dataset from the

PROMISE Software Engineering Repository. It

demonstrated robust performance in identifying defect-

prone modules with training accuracy of 98.90%, precision

of 98.52%, recall of 99.30%, and validation accuracy of

98.10%, with validation precision of 91.42% and recall of

99.53%. The confusion matrix's low false negative rate (3

occurrences) highlights the model's strong sensitivity, which

is essential for improving code quality and dependability by

giving testing priority. The study addressed class imbalance

and feature redundancy by incorporating sophisticated

preprocessing techniques such as Borderline-SMOTE,

SMOTETomek, RobustScaler, Yeo-Johnson

transformation, and RFE. This aligned with software quality

models that priorities dependability and maintainability. By

confirming deep learning's effectiveness in defect

prediction, these findings advance software engineering by

providing a data-driven strategy to increase system

dependability. However, drawbacks include the CNN-

LSTM model's computational cost, which may impede

practical deployment, and possible generalizability

problems brought on by reliance on a single dataset. To

improve effectiveness and application, future studies should

investigate hybrid models incorporating attention processes,

cross-project validation, and optimization strategies such

model pruning. By giving developers practical insights to

improve software quality and pointing out areas for

additional research to solve real-world issues in various

software contexts, this study lays the groundwork for the

advancement of automated bug prediction.

 International Journal of Innovations In Science Engineering And Management

380 http://ijisem.com

REFERENCES

[1] Hall, Tracy, et al. "A Systematic Literature Review

on Fault Prediction Performance in Software

Engineering." IEEE Transactions on Software

Engineering, vol. 38, no. 6, 2012, pp. 117-137,

doi:10.1109/TSE.2011.103.

[2] Lessmann, Stefan, et al. "Benchmarking

Classification Models for Software Defect

Prediction: A Proposed Framework for Empirical

Research." IEEE Transactions on Software

Engineering, vol. 34, no. 5, 2008, pp. 645-658,

doi:10.1109/TSE.2008.35.

[3] Menzies, Tim, et al. "Implications of Ceiling

Effects in Defect Predictors." Proceedings of the

4th International Workshop on Predictor Models in

Software Engineering, 2008, pp. 1039-1047,

doi:10.1145/1370788.1370801.

[4] Kim, Sunghun, et al. "Classifying Software

Changes: Clean or Buggy?" IEEE Transactions on

Software Engineering, vol. 34, no. 2, 2008, pp.

131-145, doi:10.1109/TSE.2007.70773.

[5] Wang, Song, et al. "Automatically Learning

Semantic Features for Defect Prediction."

Proceedings of the 38th International Conference

on Software Engineering, 2016, pp. 74-85,

doi:10.1145/2884781.2884804.

[6] Miloudi, Chaymae, et al. "The impact of grid

search on bug resolution prediction for open-source

software." 2023 9th International Conference on

Control, Decision and Information Technologies

(CoDIT). IEEE, 2023.

[7] S. Chidamber and C. Kemerer, “Metric For

OOD_Chidamber Kemerer 94.pdf,” IEEE

Transactions on Software Engineering, vol. 20, no.

6. pp. 476–493, 1994.

[8] T.N. Zimmermann, N. Nagappan, and Zeller, A.

“Predicting bugs from history software evolution”.

Springer Berlin Heidelberg, pp 69,88, 2008.

[9] H. WANG, T. M. KHOSHGOFTAAR, J. VAN

HULSE, and K. GAO, “Metric Selection for

Software Defect Prediction,” Int. J. Softw. Eng.

Knowl. Eng., vol. 21, no. 2, pp. 237–257, 2011.

[10] M. Singh and D.S. Salaria. “Software defect

prediction tool based on neural network”.

International Journal of Computer Applications.

Vol. 70 No. 22. pp- 22-28. 2013.

[11] A. Okutan and O. T. Yildiz, “Software defect

prediction using Bayesian networks,” Empir.

Softw. Eng., vol. 19, no. 1, pp. 154–181, 2014.

[12] V.G. Palaste and V.S. Nandedkar. “A Survey on

software defect prediction using data mining

techniques”. International Journal of Innovative

Research in Computer and Communication

Engineering. Vol. 3 No. 11, 2015.

[13] Challagulla, Venkata U.B., Farokh B. Bastani, I.

Ling Yen, and Raymond A. Paul, ―Empirical

assessment of machine learning based software

defect prediction techniques, ‖ Proceedings -

International Workshop on ObjectOriented Real-

Time Dependable Systems, WORDS, pp. 263–270,

2005, doi: 10.1109/WORDS.2005.32.

[14] Lessmann, Stefan, Bart Baesens, Christophe Mues,

and Swantje Pietsch, ―Benchmarking

classification models for software defect

prediction: A proposed framework and novel

findings, ‖ in IEEE Transactions on Software

Engineering, 2008, vol. 34, no. 4, pp. 485–496. doi:

10.1109/TSE.2008.35.

[15] Yaojing Wang, Yuan Yao, Hanghang Tong, Xuan

Huo, Ming Li, Feng Xu, and Jian Lu. Enhancing

supervised bag localization with metadata and

stack-trace. Knowledge and Information Systems,

62:2461-2484, 2020

[16] [16] Kai Yang, Yi Cai, Ho-fung Leung, Raymond

YK Lau, and Qing Li. Itwf: A framework to apply

term weighting schemes in topic model.

Neurocomputing, 350:248-260, 2019.

[17] Tse-Hsun Chen, Stephen W Thomas, and Ahmed E

Hassan. A survey on the use of topic models when

mining software repositories. Empirical Software

Engineering, 21:1843-1919, 2016.

[18] Christopher S Corley, Kostadin Damevski, and

Nicholas A Kraft. Changeset- based topic modeling

of software repositories. IEEE Transactions on

Software Engineering, 46(10):1068-1080, 2018.

[19] Boehm, Barry W., et al. Software Engineering

Economics. Prentice-Hall, 1981.

[20] Hall, Tracy, et al. “A Systematic Literature Review

on Fault Prediction Performance in Software

Engineering.” IEEE Transactions on Software

Engineering, vol. 38, no. 6, 2012, pp. 117–137,

doi:10.1109/TSE.2011.103.

[21] Menzies, Tim, et al. “Reducing Features to

Improve Bug Prediction.” IEEE Transactions on

Software Engineering, vol. 35, no. 6, 2009, pp.

775–787, doi:10.1109/TSE.2009.51.

[22] McCall, J. A., et al. “Concepts and Definitions of

Software Quality.” Software Quality Assurance: A

Guide for Developers and Managers, edited by J.

International Journal of Innovations In Science Engineering And Management

https://ijisem.com 381

A. McCall, Software Productivity Consortium,

1977, pp. 15–30.

[23] Kim, Sunghun, et al. “Classifying Software

Changes: Clean or Buggy?” IEEE Transactions on

Software Engineering, vol. 34, no. 2, 2008, pp.

131–145, doi:10.1109/TSE.2007.70773.

[24] Wang, Song, et al. “Automatically Learning

Semantic Features for Defect Prediction.”

Proceedings of the 38th International Conference

on Software Engineering, 2016, pp. 74–85,

doi:10.1145/2884781.2884804.

[25] Sayyad Shirabad, Jelber, and Tim J. “The

PROMISE Repository of Software Engineering

Databases.” School of Information Technology and

Engineering, University of Ottawa, 2005

http://promise.site.uottawa.ca/SERepository.

[26] Alenezi, A., and M. Alshehri. “Software Defect

Prediction Analysis Using Machine Learning

Techniques.” Sustainability, vol. 15, no. 6, 2023,

pp. 5517, doi:10.3390/su15065517.

[27] Chawla, Nitesh V., et al. “SMOTE: Synthetic

Minority Over-sampling Technique.” Journal of

Artificial Intelligence Research, vol. 16, 2002, pp.

321–357, doi:10.1613/jair.953.

