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Abstract 

This study examines the effectiveness of a hybrid Convolutional Neural Network (CNN) and Long Short-

Term Memory (LSTM) model for predicting software bugs, with the objective of improving code quality 

and dependability.  The research leverages the JM1 dataset from the PROMISE Software Engineering 

Repository and utilizes sophisticated preprocessing approaches, including Borderline-SMOTE, 

SMOTETomek, RobustScaler, Yeo-Johnson transformation, and Recursive Feature Elimination, to 

mitigate class imbalance and feature redundancy.  The CNN-LSTM model attained a validation accuracy 

of 98.10%, a precision of 91.42%, and a recall of 99.53%, exhibiting a minimal false negative rate and 

indicating great sensitivity in detecting defect-prone modules.  The results underscore the model's 

capacity to identify spatial and sequential patterns in software metrics, providing a reliable instrument 

for early fault identification.  This work enhances software engineering by confirming deep learning's 

efficacy in defect prediction, offering practical insights for developers, and delineating future research 

avenues for cross-project generalization and model optimization. 

Keywords; Software Bug Prediction, Machine Learning, Deep Learning, CNN-LSTM, Code Quality, 

Software Reliability, Feature Selection, Class Imbalance, Software Metrics, Defect Detection. 

INTRODUCTION 

Software systems are essential to contemporary technological progress, 

driving vital applications in sectors such as healthcare, finance, and transportation.  

Nonetheless, software bugs—defects or imperfections in code—can undermine 

system reliability, resulting in performance deterioration, security weaknesses, or 

catastrophic failures.  The growing intricacy of software systems has heightened the 

difficulty of maintaining code quality, rendering human bug identification 

ineffective and susceptible to errors.  Consequently, automated methodologies for 

predicting software defects have garnered considerable interest in software 

engineering research.  Machine learning (ML) algorithms, capable of discerning 

patterns from previous data, provide effective solutions for forecasting software 

errors, thereby enhancing code quality and system dependability. 

 The importance of software bug prediction is in its ability to lower 

development expenses, improve software quality, and alleviate dangers linked to 

defective code.  Identifying defect-prone modules early in the development 

lifecycle enables developers to spend resources efficiently, priorities testing efforts, 

and produce resilient software solutions.  Conventional bug prediction techniques 

frequently depended on static code metrics, such lines of code, cyclomatic 

complexity, or coupling, to assess the probability of defects.  Nonetheless, these 

methodologies often failed to elucidate the intricate linkages inside software 

systems.  Machine learning methodologies, such as decision trees, random forests, 

support vector machines, and neural networks, have exhibited enhanced efficacy in 

modelling intricate patterns in software metrics, resulting in more precise 

predictions [1]. 
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Recent research have investigated the utilization of machine 

learning in bug prediction with significant results.  

Lessmann et al. performed an extensive benchmarking 

research that compared several machine learning algorithms 

for defect prediction, emphasizing the efficacy of ensemble 

approaches such as random forests in attaining high 

prediction accuracy [2].  Menzies et al. underscored the 

significance of feature selection in augmenting the efficacy 

of ML-based bug prediction models, demonstrating that 

pertinent code metrics substantially bolster predictive 

capability [3].  These studies highlight the capacity of 

machine learning to overcome the constraints of 

conventional methods, especially in managing extensive, 

high-dimensional software data. 

 Notwithstanding these gains, obstacles persist in the realm 

of software bug prediction.  The heterogeneity of software 

projects, differing coding methodologies, and the fluidity of 

development environments hinder the generalizability of 

machine learning models.  Furthermore, the quality of 

training data, including noise and class imbalance, can 

profoundly affect model performance [4].  Recent studies 

have investigated deep learning methodologies, including 

convolutional neural networks and recurrent neural 

networks, to capture temporal and structural connections in 

code, with promising outcomes in enhancing prediction 

accuracy [5].  Nevertheless, these methodologies sometimes 

need considerable computer resources and extensive 

labelled datasets, presenting practical obstacles to wider use. 

 This empirical study seeks to examine the effectiveness of 

several machine learning methods in forecasting software 

defects, emphasizing their influence on code quality and 

dependability.  This research aims to uncover the best 

effective methods for defect prediction by analyzing a varied 

array of software variables and using several machine 

learning models, while also assessing their performance 

across different software projects.  The research examines 

the significance of feature engineering and data pretreatment 

in improving model correctness.  This research enhances the 

understanding of automated bug prediction by conducting a 

comparative examination of classic and sophisticated 

machine learning algorithms, offering practical insights for 

software developers and quality assurance teams. 

RELATED WORK 

[6] This paper investigates the estimate of maintenance work 

in software engineering, emphasizing machine learning 

approaches for open-source software maintenance effort 

estimation (O-MEE).  Although optimizing tuning 

parameters (TP) is recognized to improve machine learning 

performance, its effect on O-MEE bug resolution prediction 

has yet to be well investigated.  This study empirically 

assesses the grid search TP methodology on support vector 

machines, k-Nearest Neighbor, and Random Tree classifiers 

utilizing datasets from Apache, Eclipse JDT, and Eclipse 

Platform.  Eighteen machine learning classifiers were 

created, illustrating that optimizing true positives enhances 

performance relative to default configurations. 

 [7] This research underscores the necessity of enhancing 

software development methodologies within the information 

technology sector.  The author presents six object-oriented 

design metrics, tested with empirical C++ and Smalltalk 

data, to evaluate their independence and effectiveness.  

These indicators assist managers in assessing software 

quality, pinpointing areas requiring further testing or 

redesign, and improving process efficiency.  The object-

oriented metrics package facilitates cost and time efficiency 

by enhancing software development oversight. 

 [8] This research illustrates how systematic mining detects 

software modules susceptible to errors.  Software defects are 

a significant cause of quality deterioration, and bug 

repositories function as essential data sources for monitoring 

successes and failures.  The bug database offers extensive 

insights into software problems, facilitating quality 

enhancement. 

 [9] Wang et al. (2011) underscore the essential importance 

of feature selection in data mining for software fault 

prediction.  Feature selection improves classification models 

for defect and risk prediction by eliminating duplicate data.  

The research employs six filter-based rankers on three 

extensive software projects, including SVM, NB, KNN, LR, 

and MLP classifiers.  AUC performance measures indicate 

that the quality of the dataset substantially influences ranker 

efficacy.  The authors propose additional trials utilizing 

varied datasets and application domains, integrating 

contradicting evidence in later investigations. 

 10 This study utilizes the Levenberg-Marquardt (LM) 

neural network approach to forecast software problems early 

in the development lifecycle, hence minimizing testing and 

total project expenses.  The study use object-oriented (OO) 

and Chidamber and Kemerer (CK) metrics from the 

PROMISE repository to evaluate neural network predictions 

utilizing polynomial functions and the LM technique.  The 

results demonstrate a high precision in flaw identification, 

validating the model's efficacy. 

 [11] This paper promotes the use of a succinct collection of 

essential software metrics for fault prediction.  A Bayesian 

network is utilized to examine the correlation between 
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metrics and fault susceptibility, integrating Source Code 

Quality Metrics and the Number of Researchers with 

PROMISE repository data.  Nine datasets from the 

PROMISE repository were examined, indicating that RFC, 

LOC, and LOCQ measures are more efficacious in 

mitigating fault proneness compared to NOC and DIT.  

Subsequent research will investigate supplementary 

measures to enhance defect prediction. 

 [12] This study highlights the significance of software 

testing for mission-critical, safety-critical, and business-

critical applications.  Anticipating fault-prone and non-fault-

prone modules prior to testing is a cost-efficient approach.  

Misclassifying functional modules as defective escalates 

expenses owing to redundant testing, whereas 

misclassifying defective modules as functional poses a 

danger of catastrophic failures.  The research presents an 

innovative failure prediction technique that diminishes false 

alarm rates and enhances detection accuracy, hence 

improving software dependability.  This document also 

examines contemporary data mining methodologies for 

defect prediction, highlighting their significance in prompt 

problem identification and dependable software 

development. 

 [13] This study examines software quality prediction 

utilizing classifiers such as Logistic Regression, Decision 

Trees, Naive Bayes, K-Nearest Neighbors, One Rule, 

regression analysis, and neural networks across four 

datasets, integrating Halstead, McCabe, Line Count, 

operator, and branch count metrics.  It examines research 

enquiries on faulty data, predictive algorithms, data 

attributes, and algorithmic combinations.  Assessment using 

mean absolute error indicates that instance-based learning 

and 1R surpass alternative methodologies.  The integration 

of machine learning with Principal Component Analysis 

(PCA) does not enhance accuracy, indicating a prudent 

application of PCA in defect prediction models. 

 [14] This paper examines biases in software fault 

prediction, encompassing restricted dataset comparisons, 

inter-study model comparisons, and inadequate statistical 

validation.  Twenty-two classifiers, including statistical, 

closest neighbor, neural network, support vector, decision 

tree, and ensemble methodologies, were evaluated on 10 

NASA metrics datasets (CM1, KC1, KC3, PC1, PC2, PC3, 

PC4, KC4, MW1, JM1, AR).  The AUC-ROC 

measurements and the Nemenyi statistical test reveal no 

substantial performance disparities across classifiers, 

effectively correlating static code characteristics with 

software defects. 

 [15] The researchers advocate for the use of topic models to 

enhance software issue triaging.  The vector space model 

illustrates the various phrases and occurrences of software 

defects.  Nonetheless, it has difficulties with polysemous and 

synonymous phrases, since developers may employ varying 

language for same concepts or the same terms for disparate 

meanings based on context. 

 [16] Bug triaging has encountered growing difficulties with 

nomenclature.  Topic modelling resolves this by producing 

topics derived from words in documents, efficiently 

managing challenges associated with term synonyms and 

polysemy. 

 [17] Numerous subject modelling methodologies, including 

Latent Dirichlet Allocation (LDA), Probabilistic Latent 

Dirichlet Allocation (PLDA), Latent Semantic Analysis, and 

Pachinko Allocation Model (PAM), are presented in the 

literature.  Chen et al. analyzed 167 papers to deliver a 

thorough overview of effective topic modelling applications 

in software repositories. 

 [18] LDA is extensively utilized in software engineering to 

alleviate the effects of unclear terminology in activities such 

as subject filtering, feature allocation, developer 

identification, and component recommendation for problem 

reports.  Topic models associate phrases in bug reports with 

several categories, each denoting a feature or part of 

software problems attributed to distinct engineers. 

THEORETICAL FRAMEWORK 

a. Foundations of Software Bug Prediction 

Software bug prediction is an essential method in software 

engineering designed to detect components susceptible to 

defects, hence improving code quality and system stability.  

This study is fundamentally based on software quality 

assurance, which prioritises the avoidance and early 

identification of flaws to guarantee resilient software 

systems.  Software bugs, characterised as faults or defects in 

code, may result in functional failures, security 

vulnerabilities, or performance deterioration [19].  Boehm’s 

Software Quality Characteristics offer a paradigm for 

evaluating software dependability based on properties such 

as correctness, maintainability, and testability.  These 

characteristics are measured using software metrics—such 

as cyclomatic complexity, code churn, and coupling—which 

act as indicators of fault probability.  This work utilises these 

indicators as fundamental components for machine learning 

(ML)-driven bug prediction, according to the premise that 

early defect detection enhances development productivity 

and software dependability. 
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b. Machine Learning in Defect Prediction 

The use of machine learning for software bug prediction is 

based on data-driven modelling, wherein algorithms discern 

patterns from previous defect data to forecast future defects.  

Supervised learning, a fundamental paradigm in machine 

learning, is particularly pertinent as it entails training models 

using labelled datasets (e.g., defective vs non-defective 

modules) to categories or score software components.  

Algorithms like as Decision Trees, Support Vector 

Machines (SVM), and deep learning models like Long 

Short-Term Memory (LSTM) networks are proficient in 

identifying intricate, non-linear correlations in software 

metrics, outperforming conventional statistical techniques 

[20].  The theoretical foundation of machine learning in this 

context is derived from information theory, namely the 

notion of entropy, which informs feature selection to 

pinpoint the best predictive metrics.  By minimizing entropy, 

machine learning models diminish noise and improve 

prediction accuracy, as demonstrated by research indicating 

high precision (up to 0.96) with optimized feature sets [21]. 

c. Integration with Software Quality 

The amalgamation of machine learning with software 

quality assurance constitutes the theoretical foundation of 

this research.  Software quality models highlight 

quantifiable characteristics that machine learning may 

implement via predictive analytics.  McCall’s Quality Model 

emphasises dependability and maintainability as essential 

elements, which ML-based bug prediction effectively 

tackles by pinpointing high-risk modules for focused testing 

[22].  The notion of defect proneness, examined by Kim et 

al., offers a theoretical framework for comprehending the 

relationship between code attributes and problem 

prevalence, allowing ML models to focus on error-prone 

regions [23].  This paper asserts that machine learning 

methods, by modelling these connections, can improve 

software quality by decreasing defect density and enhancing 

system dependability, providing a data-driven solution to 

conventional software engineering issues. 

d. Rationale for Machine Learning Approaches 

The selection of machine learning techniques for bug 

prediction is theoretically supported by their capacity to 

manage high-dimensional, heterogeneous software data.  In 

contrast to conventional approaches that depend on linear 

assumptions, machine learning models such as Random 

Forests and LSTM networks effectively capture temporal 

and structural connections in code, as evidenced by Wang et 

al., who attained enhanced accuracy using deep learning for 

semantic feature extraction [24].  The iterative process of 

machine learning model training corresponds with the 

software development lifecycle, wherein ongoing input from 

defect data enhances predictions.  This research advances 

these ideas by mixing supervised learning with feature 

engineering approaches to create strong bug prediction 

models, thereby enhancing the theoretical discussion on the 

amalgamation of machine learning and software quality 

assurance. 

METHODOLGY 

This study adopts a systematic methodology to evaluate the 

effectiveness of machine learning algorithms in predicting 

software defects, with a focus on enhancing code quality and 

reliability. As illustrated in Figure 1, the process 

encompasses data collection, preprocessing, model 

development, and performance evaluation, leveraging 

empirical data to derive practical insights. The following 

subsections detail each phase of the research approach, 

ensuring methodological rigor and reproducibility. 

 

Figure 1 Methodology Flow 

Figure 1 Alt Text: A detailed flowchart illustrating the 

software bug prediction pipeline, including preprocessing 

steps like scaling and SMOTE, followed by a CNN-LSTM 

model and evaluation using classification metrics. 
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i. Data Collection 

The PROMISE Software Engineering Repository, a well-

known resource for software engineering research, 

especially in defect prediction (Sayyad Shirabad), provided 

the dataset for this work [25].  A collection of publicly 

accessible datasets including software metrics and defect 

information taken from actual software projects is offered 

via the PROMISE repository.  We use the CM1 dataset for 

this analysis, which comprises 498 examples of software 

modules from a NASA project and is characterized by 22 

metrics, including Halstead measures (e.g., volume, effort), 

cyclomatic complexity, and lines of code (LOC).  By 

designating each instance as either buggy or non-buggy, 

supervised learning for defect prediction is made possible.  

Because of its extensive metric coverage and proven usage 

in earlier research, the CM1 dataset was chosen to ensure 

comparison with previous investigations [26].  Furthermore, 

the dataset's class imbalance—which includes a greater 

percentage of non-buggy instances—reflects real-world 

situations, which makes it appropriate for testing machine 

learning algorithms in difficult situations. 

ii. Data Preprocessing 

To guarantee data quality and compatibility with machine 

learning (ML) techniques for software bug prediction, the 

JM1 dataset from the PROMISE Software Engineering 

Repository must be preprocessed.  A number of methodical 

preparation procedures were used to resolve issues with 

missing values, inconsistent data types, and class imbalance 

in the JM1 dataset, which included 10,885 instances with 22 

software metrics and a binary defect label (buggy or non-

buggy). 

 A first study of the dataset, which was first imported using 

Python's Pandas module, showed that some columns—most 

notably uniq_Op, uniq_Opnd, total_Op, total_Opnd, and 

branchCount—had missing values.  Using Pandas' 

to_numeric function with error coercion to handle non-

numeric data, these columns were transformed from object 

to numeric types (float64), giving incorrect entries null 

values.  The dropna technique was then used to exclude rows 

with missing values, lowering the dataset to guarantee 

consistency and completeness because missing data might 

negatively impact the performance of ML models. 

 The dataset was divided into features (X) and the target 

variable (y), where y stands for the binary defect label (0 for 

non-buggy, 1 for buggy), in order to get it ready for 

modelling.  Analysis of the class distribution showed a 

notable imbalance, with non-problematic instances (about 

80%) outnumbering buggy ones (about 20%).  A 

combination of oversampling and undersampling techniques 

was used to address this imbalance, which can bias ML 

models towards the majority class. The Borderline-SMOTE 

algorithm was used to generate synthetic samples that 

oversample the minority class (buggy instances), and 

SMOTETomek, which combines SMOTE with Tomek 

Links to remove noisy majority class samples close to the 

decision boundary [27].  Post-sampling analysis revealed a 

nearly equal distribution of classes, confirming that this 

strategy balanced the class distribution. 

 To normalize the range of software measures that differ in 

scale (e.g., LOC vs. cyclomatic complexity), feature scaling 

was done.  The feature set was transformed using scikit-

learn's RobustScaler, which ensures robust model 

performance by being less sensitive to outliers than 

StandardScaler.  Furthermore, skewness in the feature 

distribution was addressed using the Yeo-Johnson 

PowerTransformer, which improved the data's applicability 

for machine learning algorithms—especially deep learning 

models like LSTM, which are sensitive to non-normal 

distributions. 

 Lastly, the top ten most predictive characteristics were 

chosen by employing Recursive Feature Elimination (RFE) 

with a Random Forest Classifier as the estimator.  According 

to earlier research highlighting the significance of feature 

selection in defect prediction, this step decreased the 

complexity of the dataset, reducing the danger of overfitting 

and enhancing computing efficiency [21].  To prepare it for 

further model construction, the preprocessed data—which 

included scaled, transformed, and balanced features—was 

then divided into training (70%) and testing (30%) sets using 

a random seed for repeatability. 

iii. Model Building and Training 

development and assessing a machine learning (ML) model 

is the main goal of the model development and training 

phase.  In order to capture both spatial and sequential 

patterns in software metrics, this study uses a hybrid deep 

learning architecture that combines Convolutional Neural 

Networks (CNN) and Long Short-Term Memory (LSTM) 

networks. This approach supports the goal of improving 

code quality and reliability through precise bug prediction. 

Model Architecture 

Using Python's TensorFlow and Keras packages, a 

sequential deep learning model was created to analyse the 

high-dimensional, preprocessed feature set, which included 

the top ten metrics chosen by Recursive Feature Elimination 
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(RFE).  The following layers as shown in figure 2 make up 

the model architecture: 

 

Figure 2 Model Architecture 

Figure 2 Alt Text: Block diagram of the CNN-LSTM model 

structure starting with Conv1D and MaxPooling layers, 

followed by an LSTM layer, Dense layer, and final Output 

layer for binary classification 

Convolutional Layer: Convolutional Layer: To extract 

local patterns from the input features, a 1D Convolutional 

layer (Conv1D) with 16 filters and a kernel size of two was 

put into place. It used the ReLU activation function.  Finding 

spatial links in software measurements, such as correlations 

between error proneness and code complexity, is a good fit 

for this layer. 

 Max Pooling Layer: To improve the model's capacity to 

generalize across a variety of software data, a 

MaxPooling1D layer with a pool size of two was included. 

This layer reduced dimensionality and computational 

complexity while maintaining important characteristics. 

 LSTM Layer: To capture sequential dependencies in the 

feature set and represent the temporal aspect of software 

development processes, including code churn over time, an 

LSTM layer of eight units was included.  Long-term 

dependencies are very well-modeled by LSTMs. 

 Dense Layers: To provide non-linearity, a dense layer of 

eight units and a hyperbolic tangent (tanh) activation 

function was used. A 20% rate Dropout layer was then added 

to avoid overfitting by randomly deactivating neurones 

during training.  The last output layer generates a binary 

classification (buggy or non-buggy) using a single unit and 

sigmoid activation. 

Input Reshaping: To meet the needs of the Conv1D layer 

and guarantee compliance with the model's design, the input 

data was reshaped into a 3D format (samples, features, 1). 

 In order to tackle the complexity of software defect 

prediction, this hybrid CNN-LSTM architecture was 

selected because it combines the advantages of CNNs in 

feature extraction with LSTMs' ability to handle sequential 

data. 

Training Process 

As explained in the Data Preprocessing part, the model was 

trained on the resampled training dataset, which was 

balanced using SMOTETomek and Borderline-SMOTE to 

resolve class imbalance.  Thirty percent of the data was 

utilized as the test set for assessment, while the remaining 

seventy percent was used as the training set to fit the model.  

The Adam optimizer, a popular method for its adaptable 

learning rate and effectiveness in deep learning applications, 

was used to assemble the model.  In order to optimize the 

model for binary classification and meet the study's goal of 

differentiating between buggy and non-buggy modules, the 

binary cross-entropy loss function was used.  A batch size of 

128 was used for training across 7 epochs, balancing model 

convergence and computing efficiency.  Three assessment 

metrics—binary accuracy, precision, and recall—that are 

specified as follows were used to track the model's 

performance:  

Binary Accuracy: The percentage of occurrences that are 

correctly categorized as either bugged or not is known as 

binary accuracy. 

Precision: A measure of the model's ability to prevent false 

positives, calculated as the ratio of genuine positive 

predictions to total positive predictions. 

Recall: The model's sensitivity to identifying problematic 

modules is indicated by the ratio of true positive predictions 

to all real positives. 

These measures were selected because they are useful for 

assessing defect prediction models, especially when datasets 

are unbalanced.  During training, the test set was validated 

to track generalization performance and identify any 

possible overfitting.. 

Implementation Details 

TensorFlow 2.x and scikit-learn were used to preprocess and 

evaluate the model in a Jupyter notebook environment.  To 
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guarantee reliable input quality, the training procedure made 

use of the preprocessed data, which had been scaled using 

RobustScaler, transformed using Yeo-Johnson, and feature-

selected using RFE.  For repeatability, the random seed was 

set to 42, which was in line with the train-test split during 

the preprocessing stage.  In order to provide a thorough 

understanding of classification performance, the model's 

performance was assessed on the test set. The results were 

visualised using a confusion matrix to evaluate true 

positives, true negatives, false positives, and false negatives. 

 By combining cutting-edge deep learning algorithms to 

handle the difficulties of software bug prediction with 

proven procedures in defect prediction research, this 

approach guarantees a rigorous and repeatable methodology. 

RESULTS AND DISCUSSION 

The performance measures for the training and validation 

sets—accuracy, loss, precision, and recall—as well as a 

confusion matrix are shown in this part to give a thorough 

evaluation of the model's predictive power.  These findings 

support the study's goals of evaluating how well machine 

learning algorithms improve code quality and dependability, 

with an emphasis on the hybrid CNN-LSTM architecture's 

capacity to identify software modules that are prone to 

defects. 

Model Performance Metrics 

The binary cross-entropy loss function and three important 

metrics binary accuracy, precision, and recall were used to 

train and assess the CNN-LSTM model.  These measures, 

which are essential for realistic defect prediction, were 

chosen to reflect the model's overall accuracy, its capacity to 

reduce false positives, and its sensitivity to identifying 

problematic modules, respectively.  The balanced dataset 

acquired via Borderline-SMOTE and SMOTETomek 

resampling approaches was used for the training, which was 

carried out across 7 epochs with a batch size of 128.  Table 

1 provides a summary of the training and validation sets' 

performance indicators. 

Table 1 Performance Metrics of the CNN-LSTM Model 

on Training and Validation Sets 

Metric Training Set Validation Set 

Accuracy 0.9890 0.9810 

Loss 0.0318 0.0504 

Precision 0.9852 0.9142 

Recall 0.9930 0.9953 

 

With a training accuracy of 98.90%, the model demonstrated 

a high percentage of properly categorized modules, whether 

they were bugged or not.  Effective optimization during 

training is demonstrated by the training loss of 0.0318, 

where the model converges to a low error rate.  The recall of 

99.30% shows remarkable sensitivity in identifying almost 

all problematic occurrences in the training set, while the 

accuracy of 98.52% shows the model's ability to correctly 

identify troublesome modules while minimizing false 

positives.  As shown in Figure 3, the model exhibited strong 

generalization on the validation set, achieving high accuracy 

(98.10%) despite a slightly elevated loss (0.0504). The 

validation recall of 99.53% indicates near-complete 

detection of defective modules critical for practical defect 

prediction while the validation precision of 91.42% reflects 

a marginal rise in false positives compared to the training 

set. 

 
Figure 3 Performance Metrics of the CNN-LSTM Model on Training and Validation Sets 
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Figure 3 Alt Text: Bar graph visualizing the CNN-LSTM 

model’s training and validation performance metrics loss, 

recall, precision, and accuracy demonstrating high 

accuracy and recall with low validation loss. 

Confusion Matrix Analysis 

A confusion matrix was created for the validation set in 

order to assess the model's classification performance in 

more detail, as seen in Figure 4.  The matrix offers insights 

about the model's capacity to differentiate between buggy 

and non-buggy modules by providing a thorough breakdown 

of true positives (TP), true negatives (TN), false positives 

(FP), and false negatives (FN). 

 

Figure 4 Confusion Matrix 

Figure 4 Alt Text: Confusion matrix showing the number of 

true positives, false positives, true negatives, and false 

negatives achieved by the CNN-LSTM model on the 

validation dataset. 

Table 2 Confusion Matrix for CNN-LSTM Model on 

Validation Set 

Actual \ Predicted Non-Buggy (0) Buggy (1) 

Non-Buggy (0) 2573 (TN) 59 (FP) 

Buggy (1) (FN) P) 

 

The model showed significant discriminative capability, 

properly classifying 629 buggy modules (TP) and 2573 non-

buggy modules (TN), according to the confusion matrix.  

The model missed extremely few defective modules, as 

evidenced by the low number of false negatives (3), which 

is consistent with the high recall of 99.53%.  The reduced 

validation precision (91.42%) is a result of the 59 false 

positives, which point to a minor propensity to overpredict 

problematic modules as seen in Table 2.  Previous studies 

have observed that this trade-off between accuracy and 

recall is typical in unbalanced datasets, even after 

resampling [27].  Prioritizing testing efforts and enhancing 

code quality depend on the model's ability to detect defect-

prone modules, which is supported by the high true positive 

rate. 

 In conclusion, the CNN-LSTM model performs 

exceptionally well in predicting software bugs, exhibiting 

excellent recall, accuracy, and precision across training and 

validation datasets.  The model's practical value in 

improving code quality and dependability is further 

supported by the confusion matrix, which further validates 

the model's capacity to properly detect defective modules 

with few missed problems.  These findings offer a solid basis 

for addressing the study's goals and establish the framework 

for the discussion section that follows. 

CONCLUSION 

A hybrid CNN-LSTM model for software bug prediction 

was evaluated in this study using the JM1 dataset from the 

PROMISE Software Engineering Repository. It 

demonstrated robust performance in identifying defect-

prone modules with training accuracy of 98.90%, precision 

of 98.52%, recall of 99.30%, and validation accuracy of 

98.10%, with validation precision of 91.42% and recall of 

99.53%.  The confusion matrix's low false negative rate (3 

occurrences) highlights the model's strong sensitivity, which 

is essential for improving code quality and dependability by 

giving testing priority.  The study addressed class imbalance 

and feature redundancy by incorporating sophisticated 

preprocessing techniques such as Borderline-SMOTE, 

SMOTETomek, RobustScaler, Yeo-Johnson 

transformation, and RFE. This aligned with software quality 

models that priorities dependability and maintainability.  By 

confirming deep learning's effectiveness in defect 

prediction, these findings advance software engineering by 

providing a data-driven strategy to increase system 

dependability.  However, drawbacks include the CNN-

LSTM model's computational cost, which may impede 

practical deployment, and possible generalizability 

problems brought on by reliance on a single dataset.  To 

improve effectiveness and application, future studies should 

investigate hybrid models incorporating attention processes, 

cross-project validation, and optimization strategies such 

model pruning.  By giving developers practical insights to 

improve software quality and pointing out areas for 

additional research to solve real-world issues in various 

software contexts, this study lays the groundwork for the 

advancement of automated bug prediction. 
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