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Abstract 

The experimental evaluation of the suggested CatBoost-based groundwater quality classification system 

has proven discriminative power and positive generalization capacity. The model gets a score of 0.9730 

accuracy, which implies that most samples of groundwater are classified correctly in either producing 

or not producing categories. This high accuracy is due to the model's very good ability to learn all the 

complicated nonlinear relationships among hydrochemical parameters and also to its performing well 

across the training and testing datasets. The F1-score of 0.9375 that was obtained additionally indicates 

a very good trade-off between precision and recall, which is a very crucial factor in groundwater quality 

assessment where the imbalance between classes is common and misclassification can come with serious 

environmental and agricultural risks. The analysis of the confusion matrix has reinforced these results 

by indicating that false negatives were very infrequently happening, thus making it less possible that 

unsatisfactory groundwater will be wrongly classified as good. This kind of dependability is very 

important for protecting the irrigation methods and for securing the health of the population. What is 

more, not only is the predictive performance powerful, but also the interpretability analysis via SHapley 

Additive exPlanations (SHAP) discloses that salinity-related parameters, sodium hazard indicators, 

groundwater level conditions, and dissolved constituents are the main drivers in deciding the 

groundwater suitability. The correlation of these significant features with established hydrogeochemical 

knowledge backs up the scientific reliability of the model. To sum up, the attained accuracy and F1-

score along with the transparent interpretability confirm that the proposed system is very effective and 

also suitable for practical application in real-world groundwater quality management. 

Keywords; Groundwater Quality, Machine Learning, CatBoost, Irrigation Suitability, Binary 

Classification, SHAP. 

INTRODUCTION 

Groundwater is the main source of freshwater for millions of people around the 

globe, especially in places where the supply of surface water is either limited or not 

reliable. In many developing and semi-arid regions, groundwater is the main source 

for drinking water supply, agricultural irrigation, and industrial usage, thus its 

quality is a critical determinant for public health, food security, and economic 

stability. However, human activities, uncontrolled groundwater abstraction, heavy 

use of fertilizers and pesticides in agriculture, and industrial discharge have all 

contributed to the decline of groundwater quality over a wide area in the last 

decades. 

Conventional groundwater quality evaluation methods mainly rely on 

physicochemical analysis, and deterministic hydrogeochemical modeling. 

Although these methods are time-consuming, data-intensive, and limited in their 

ability to model the complex and nonlinear interactions among water quality 

variables, they provide valuable insights into individual parameters. Moreover, 

conventional assessment methods often use predefined thresholds and subjective 

weighting schemes, which can create uncertainty and reduce robustness when 

applied in different hydrogeological settings [1]. 
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To make the interpretation of groundwater quality easier, 

the Water Quality Index (WQI)–based frameworks have 

been extensively adopted. The indices convert numerous 

parameters into a single score, thus making communication 

and decision-making easier. Nevertheless, the WQI methods 

are frequently plagued by strict classification limits and lack 

of adaptability to spatial and temporal changes, particularly 

when very small amounts of contaminants and seasonal 

variations are involved [2]. Consequently, there is a growing 

consensus that data-driven and machine learning methods 

are more suitable for tackling the complexity inherent in 

groundwater systems. 

Machine learning has made great strides recently, and 

among the areas where it has been applied with great success 

is the groundwater quality modeling because the ability of 

the method to capture nonlinear relationships, handle high-

dimensional data, and increase predictive accuracy. 

Ensemble learning techniques, in particular, have 

outperformed traditional statistical methods, providing 

powerful generalization across different datasets [3]. 

However, many powerful predictive models in machine 

learning are treated as "black boxes," which hinders their 

interpretability and limits their acceptance by experts and 

regulatory authorities in the field. 

The non-interpretability of models is a major obstacle to 

the utilization of machine learning in groundwater 

management. Decisions regarding water resources need to 

be supported with reasoning, and thus transparency and trust 

are necessary. Among the methodologies that have come to 

the forefront of this problem is Explainable Artificial 

Intelligence (XAI) which includes SHapley Additive 

exPlanations (SHAP) among its mainstay techniques that 

provide both global and local explanations of model 

predictions [4]. Thus, carving out a niche for interpretability 

along with predictive performance becomes a prerequisite 

for the establishment of trustworthy decision-support 

systems in groundwater quality assessment. 

As a result of these difficulties, an implicit machine 

learning framework for groundwater quality classification 

using CatBoost and SHAP is proposed in this study. The 

data used for the study consists of the post-monsoon 

groundwater quality of Telangana, India, where 

groundwater is an important source for irrigation and 

domestic supply. This research intends to narrow the 

predictive accuracy and practical usability gap by treating 

groundwater quality assessment as a binary classification 

problem and coupling model explainability with the 

prediction made. 

RELATED WORK 

Application of machine learning methods and techniques 

for groundwater quality assessment has been drawing 

significant attention lately mainly due to the data availability 

for monitoring and high computational power. [5]. These 

studies served as a base for the fast spread of machine 

learning becoming the main approach in groundwater 

research. 

Various researchers attempted to utilize artificial neural 

networks for predicting groundwater quality and great 

accomplishments were noticed in the case of both drinking 

and irrigation suitability assessment [6]. The neural 

network-based models are especially good for nonlinear 

relationship modeling amongst physicochemical 

parameters, but still, the performance is directly related to 

the data quality and model tuning. Another drawback is that 

they lack transparency which means that interpretation is 

difficult. 

Ensemble learning techniques like Random Forest, 

Gradient Boosting, and Extremely Gradient Boosting have 

taken the groundwater quality prediction accuracy to the 

next level by integrating numerous weak learners [7]. The 

models also present robustness and the problem of 

overfitting is reduced which is a benefit for mixed 

groundwater datasets. However, at the same time, the use of 

ensemble models often complicates the interpretability issue 

further because of their intricate internal structures. 

Groundwater quality assessment has been greatly 

enhanced by the combination of hydrogeochemical analysis 

and machine learning, according to recent research [8]. This 

is what the hybrid methods do: they meld together the 

knowledge from the domain and the data analysis, thus 

leading to more precise classification and prediction. In 

addition, wide-ranging reviews have pointed out the gradual 

change from conventional models to interpretable machine 

learning frameworks in groundwater research [9]. 

Data mining processes have been extensively utilized for 

groundwater quality classification, mainly in regional 

assessments. Revealing patterns and determining feature 

significance are the advantages of these techniques; 

however, they are not very strong in predictive ability when 

used alone [10]. The use of optimization algorithms and 

hybrid modeling, which performance prediction boosting, 

has been suggested as a solution to this problem [11]. 

Gradations in groundwater quality due to climate variability 

and human activities are of a complex nature. The reliability 

of long-term predictions is increased if climatic variables 
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and time factors are taken into account in the machine 

learning models [12]. Moreover, certain regional studies 

have revealed the need for specific modeling approaches 

based on the geographical differences in groundwater 

systems [13]. 

To start with, machine learning applications in India 

have been reported for the quality evaluation of groundwater 

and have given good results in different types of 

hydrogeological conditions like arid and semi-arid areas, 

etc. [14]. Data mining–based groundwater studies of the past 

have given a lot of help in understanding spatio-temporal 

variability issues and classification techniques [15]. 

Recent reviews have collected and summarized 

advancements in water quality forecasting and 

classification, pointing to challenges related to data quality, 

interpretability, and scalability as still existing [16]. Hybrid 

and ensemble methods have been very successful in tasks of 

predicting water salinity and quality [17]. Spatio-temporal 

modeling methods have not only improved groundwater 

quality mapping for irrigation but also other areas [18]. 

Machine learning-based indices and classification 

frameworks for groundwater quality have been advancing, 

with several studies reporting increased accuracy and 

robustness across different regions [19], [20]. Seasonal 

groundwater quality prediction has turned out to be a 

significant research direction, pointing out the importance of 

temporal dynamics in groundwater assessment [21]. 

Surface and groundwater quality modeling studies have 

also demonstrated the value of machine learning–driven 

prediction systems for real-time decision support [22]. 

Advanced optimization-based ensemble models have further 

improved groundwater quality classification reliability [23]. 

Recent studies combining hydrogeochemistry with machine 

learning have confirmed the effectiveness of integrated 

frameworks for both drinking and irrigation suitability [24]. 

Performance evaluation of classification algorithms remains 

an important consideration for groundwater data analysis 

[25]. 

Overall, the literature highlights the growing importance 

of interpretable, data-driven groundwater quality assessment 

frameworks that balance predictive accuracy with 

transparency. 

METHODOLOGY 

This research implements a systematic and repeatable 

machine learning process to create a model for groundwater 

quality classification that is intelligible. The method is 

influenced by a triad of major goals: (i) to build a strong 

predictive model that can classify the groundwater 

suitability correctly, (ii) to make certain the model is reliable 

in the presence of class imbalance and diverse feature 

distributions, and (iii) to utilize explainable artificial 

intelligence methods to give clear justifications of the model 

output. The entire approach includes data collection, 

cleaning and converting, feature construction, model 

making, performance rating, and interpretation study. 

Study Area and Dataset Description 

The dataset utilized for analyzing groundwater quality in 

this study is derived from the post-monsoon groundwater 

monitoring which was carried out in various Telangana 

districts, India, during the years 2018, 2019, and 2020. 

Telangana is a region characterized by semi-aridity and 

hence groundwater is the main source for irrigation and 

drinking purposes. The variability of rainfall during the 

different seasons, the adoption of intensive agriculture in 

some parts, and the growing demand for groundwater have 

all resulted in variations in the quality of groundwater in this 

region over time and space. 

The dataset contains physicochemical and 

hydrogeological parameters that are usually considered in 

the assessment of the groundwater quality such as pH, total 

dissolved solids, total hardness, and so on, besides the 

groundwater level indicators and seasonal attributes. Also, 

spatial identifiers such as district information are included to 

capture regional variability. Quality classification labels 

based on irrigation suitability categories are assigned to each 

groundwater sample. 

A multi-year analysis is made possible and model 

generalization is improved as datasets from the three years 

are combined into one single dataset. The model learns the 

patterns that are consistent over the years while considering 

the annual fluctuations in groundwater quality. 

Table 1 Dataset 

Parameter Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

S. No. 302 312 129 123 122 

District Sircilla Mahabubnagar Mahabubnagar Bhadradri Mahabubnagar 

Mandal Illanthakunta Mahabubnagar (R) CC Kunta Manuguru Bhoothpur 
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Village Illanthukunta Kodur Kurumurthy Pagideru Elkicherla 

Latitude (°N) 18.31194 16.68000 16.441442 17.97000 16.62300 

Longitude (°E) 78.95638 77.92400 77.816757 80.73000 78.11600 

Groundwater Level (m) 3.51 7.66 19.73 0.87 3.21 

Season Post-monsoon 

2020 

Post-monsoon 

2019 

Post-monsoon 

2019 

Post-monsoon 

2020 

Post-monsoon 

2020 

pH 8.02 7.95 7.79 8.12 8.98 

TDS (mg/L) 485.12 852.48 811.52 1048.32 524.80 

Total Hardness (mg/L) 219.96 379.93 439.96 339.92 219.93 

SAR 2.316 3.132 1.605 4.217 2.697 

RSC (meq/L) 0.0008 0.4015 −2.9992 −0.9984 0.8013 

Irrigation Class C3S1 C3S1 C3S1 C3S1 C3S1 

Water Quality Status P.S. P.S. P.S. P.S. P.S. 

 

Target Variable Definition 

Groundwater quality evaluation is viewed as a 

supervised binary classification task. The classification trick 

does not predict continuous water quality indices but rather 

focuses on deciding the use of a groundwater sample, that is, 

whether it is suitable or unsuitable for usage. This way of 

thinking fits exactly with the practical decision-making 

needs in the management of water resources where binary 

suitability assessments are usually more effective than 

numerical indices. 

The initial classification categories for irrigation water 

are changed into a binary target variable. The samples that 

are classified under the irrigation suitability categories with 

favorable conditions are assigned the label “1” (suitable), 

while all the other categories are assigned the label “0” 

(unsuitable). This change gives consistency over the years 

and provides a simpler way of assessing the performance of 

models without losing the vital information necessary to 

judge the suitability of groundwater. 

Data Preprocessing and Cleaning 

The raw dataset collected comprises both numerical and 

categorical characteristics, besides, there are missing values 

and redundant attributes. Data preprocessing is a pivotal 

activity that guarantees the stability and strength of the 

model. The proposed preprocessing plan is composed of the 

following stages: 

Redundant and Non-Informative Attributes Removal: 

The identifiers like serial numbers, village names, and 

very exact geographic coordinates will be eliminated since 

they do not have a direct impact on the groundwater quality 

classification and may also cause noise. 

Dealing with Missing Values: 

For categorical attributes, a missing value is substituted 

for a distinct category to keep the information intact and at 

the same time prevent data loss. In the case of numerical 

attributes that have missing or invalid data, the binning 

method will be applied reducing sensitivity to outliers. 

Feature Transformation and Binning: 

Continuous numerical variables will be converted to 

quantile-based bins. This transformation reduces the 

influence of extreme values, improves the interpretability of 

the model, and is in line with the strengths of the CatBoost 

algorithm in dealing with categorical processing. 

Rare Category Encoding: 

The rare categories in the categorical features like the 

district, season, and binned hydrochemical parameters are 

together using rare label encoding. This process results in 

reduced sparsity and the model being less likely to overfit to 

the unseen categories. 

Class Imbalance Handling: 

The groundwater suitability datasets usually have a class 

imbalance issue, with the number of suitable samples being 

greater than that of the unsuitable ones or vice versa, 

depending on the region. In order to counteract the bias, the 

class weights are calculated and then applied during model 

training, thus ensuring that equal importance is given to both 

classes. 

Feature Engineering 

Feature engineering is the process of improving the 

model’s predictive power and its interpretation as well. The 

parameters used in the hydrochemical analysis are expressed 

in the form of categories that reveal the most significant 

ranges from the perspective of groundwater quality 

evaluation. To illustrate this, the values for groundwater 

levels are transformed using the logarithmic transformation 

and then grouped into bins so that their skewness is taken 

into account, while pH values are categorized into easily 

understandable intervals. 
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Seasonal characteristics are kept in place in order to 

reflect the influence of the post-monsoon period on the 

groundwater quality, as the rain-induced recharge plays a 

key role in the processes of dilution and contaminant 

transportation. Regional characteristics, such as district 

codes, are incorporated into the model so that it can discover 

and recognize the spatial patterns that are connected to 

different types of geology and land use. 

The feature set that is generated is comprised of a 

balanced combination of hydrochemical, hydrogeological, 

seasonal, and spatial attributes, which makes it possible for 

the model to depict the multidimensional nature of 

groundwater quality changes. 

Model Selection: CatBoost Classifier 

The CatBoost classifier has been chosen as the main 

predictive model owing to its ability to effectively deal with 

structured tabular data that comprises different feature types. 

CatBoost has a number of advantages that are especially 

pertinent to the classification of groundwater quality: 

• Categorical attributes are automatically processed 

without the need for extensive one-hot encoding. 

• Ordered boosting prevents overfitting resulting in 

very robust models. 

• Strong performance on datasets with class 

imbalance. 

• The model can represent the nonlinear interactions 

between the features. 

 

Figure 1 CatBoost Classifier 

A great selection of hyperparameters is used for 

configuring the model, such as tree depth, learning rate, 

regularization strength, and the number of iterations. These 

parameter values are selected in a way that neither the 

complexity of the model nor the generalization capability of 

it is compromised. 

The dataset is divided into the training and testing 

subsets by means of stratified sampling that maintains the 

proportion of classes. The weighted loss functions are used 

in model training to compensate for the class imbalance, and 

hence the probabilistic predictions are made for evaluation. 

Model Interpretability Using SHAP 

Explainability is among the key elements of the 

methodology, where the SHapley Additive exPlanations 

(SHAP) are used to evaluate the role of features. With the 

help of SHAP values, the role of each feature is shown in 

predictions of individuals as well as the overall model 

behaviour. 

The two interpretations of the analysis complement each 

other: 

Global Interpretability: The most important 

groundwater quality parameters throughout the data are 



International Journal of Innovations In Science Engineering And Management  

https://ijisem.com  51 

pointed out by SHAP summary plots, which are ranked 

according to their average effect on the output of the model. 

Local Interpretability: To learn the influence of certain 

parameter ranges on groundwater suitability classification, 

the feature-wise distributions of SHAP values are examined. 

RESULT AND DISCUSSION 

This section discusses the outcomes obtained from the 

proposed CatBoost-based groundwater quality classification 

framework, strictly based on the experimental findings 

presented in the thesis. The discussion focuses on 

classification effectiveness, model behavior, and 

interpretability characteristics observed during 

experimentation, without introducing any additional or 

inferred results. 

Classification Performance Outcomes 

The empirical assessment reveals that the classifying 

model based on CatBoost secures exceptionally accurate 

predictions when it is implemented on the post-monsoon 

groundwater quality dataset that has been processed. The 

model exhibited a considerable capability to differentiate, 

which was further confirmed by a high ROC-AUC score 

during testing that indicated the successful discrimination of 

groundwater samples into good and bad ones. 

On the test dataset, the model had an overall 

classification accuracy of 97.30%, which indicates that the 

majority of groundwater samples were classified correctly. 

Moreover, an F1-score of 0.9375 was recorded, which 

indicates a strong precision-recall balance despite class 

imbalance in the dataset. These outcomes confirm that the 

model effectively copes with imbalanced class distributions 

without altering its reliable classification performance. 

The performance metrics of training and testing that 

were consistent, led to the conclusion that the model is 

capable of generalizing and is also free from the problem of 

overfitting. The said reliability in the model's outcome is 

especially needed in groundwater quality assessment since 

data variability among different regions and over time could 

drastically impact the model's reliability. 

Table 2 Accuracy & F1- Score 

Metric Value 

Accuracy 0.9730 

F1-Score 0.9375 

Confusion Matrix Interpretation 

Analysis of confusion matrices gives a thorough 

explanation of proper and improper classifications. The 

results indicate that the majority of groundwater samples 

were categorized correctly according to their suitability. The 

rates of misclassification were low, and among them, there 

were especially few cases of unsatisfactory groundwater 

being mistakenly classified as satisfactory. 

This result indicates the success of the weight given to 

classes and the strict decision limits applied during the 

training of the model. Groundwater management requires 

very careful and delicate handling whereby mistakes of false 

negatives should not just be tolerated but rather eliminated 

completely. This is because incorrect judgment on water 

quality may lead to unpleasant consequences in agriculture 

and the environment. Hence, the results of the confusion 

matrix prove that the proposed framework is suitable for 

practical groundwater quality screening. 

 

Figure 2 Confusion Matrix 

SHAP-Based Interpretability Outcomes 

The application of SHapley Additive exPlanations 

(SHAP) for interpretability analysis, on the one hand, 

showed that only a small number of physicochemical 

parameters were always dominating the groundwater quality 

classification. On the other hand, the parameters linked to 

salinity, sodium hazard, and dissolved constituents exhibited 

the highest SHAP values, thus indicating their crucial role in 

the groundwater classification process. 

The extraction of SHAP values further drew a map of 

contributions wherein one range of features added positively 

to the classification of suitability while another range of 

features had a negative contribution. The patterns derived 

from the training are in line with the established 
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hydrochemical understanding, and this has given the model 

a seal of approval as being the one that captures meaningful 

relationships instead of spurious correlations. 

 

Figure 3 SHAP Analysis 

Feature-Wise SHAP Distribution Behavior 

The exploration of SHAP distributions feature-wise 

revealed that there are groundwater quality parameters 

which keep contributing steadily and uniformly across their 

classes, whereas some others show the opposite with their 

contribution changing a lot depending on concentration 

levels. The mentioned scenario reflects a sort of threshold 

effect where certain ranges of parameters lead to totally 

different classification results. 

These findings are helpful for pinpointing the parameters 

that need to be monitored more closely and for getting to 

know the extent to which the quality of groundwater 

decisions is affected by the variations within the specific 

parameter ranges. 

  

 

Figure 4 Feature-Wise SHAP Analysis 

Permutation Feature Importance Validation 

The evaluation metric for the permutation feature 

importance analysis was ROC–AUC. The outcomes were in 

close agreement with the rankings based on SHAP feature 

importance, which led to the conclusion that the parameters 

with the highest SHAP scores also the most significant 

performance drop during the permutation process. 
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The closeness of these two independent interpretability 

methods not only validates the detected main groundwater 

quality factors but also proves the model's understanding to 

some extent. 

 

0.1 Permutation Feature Importance 

Overall Model Behavior and Findings 

The experimental results confirm that the CatBoost-

based classification framework performs accurately, 

robustly, and consistently when applied to multi-year 

groundwater quality data. The combination of categorical 

feature handling, class weighting, and ensemble learning 

enables the model to capture complex nonlinear interactions 

without overfitting. 

Importantly, the integration of SHAP and permutation 

importance ensures that model decisions remain transparent 

and hydrochemically meaningful. The results validate the 

proposed framework as an effective and interpretable 

approach for groundwater quality classification aligned with 

practical irrigation and agricultural decision-making needs. 

CONCLUSION 

The presented study lays the groundwork for a 

Groundwater Quality Classification System based on 

interpretable machine learning that employs CatBoost and 

SHAP. Processing the real-world post-monsoon 

groundwater data from Telangana, India the research shows 

that machine learning models can effectively understand 

difficult hydrochemical interactions and at the same time 

keep things clear by using explainable AI techniques. The 

findings verify that CatBoost delivers strong classification 

performance on various and unequal groundwater datasets 

and that SHAP facilitates significant interpretation of the 

model outputs. The suggested framework allows for 

groundwater management and enhances it by providing a 

large-scale regional water quality assessment solution. 

Looking ahead, researchers might develop the current 

study by involving spatio-temporal modeling, multi-class 

classification, and real-time monitoring systems to further 

improve groundwater quality management strategies. 
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