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Abstract

The experimental evaluation of the suggested CatBoost-based groundwater quality classification system
has proven discriminative power and positive generalization capacity. The model gets a score of 0.9730
accuracy, which implies that most samples of groundwater are classified correctly in either producing
or not producing categories. This high accuracy is due to the model's very good ability to learn all the
complicated nonlinear relationships among hydrochemical parameters and also to its performing well
across the training and testing datasets. The F1-score of 0.9375 that was obtained additionally indicates
a very good trade-off between precision and recall, which is a very crucial factor in groundwater quality
assessment where the imbalance between classes is common and misclassification can come with serious
environmental and agricultural risks. The analysis of the confusion matrix has reinforced these results
by indicating that false negatives were very infrequently happening, thus making it less possible that
unsatisfactory groundwater will be wrongly classified as good. This kind of dependability is very
important for protecting the irrigation methods and for securing the health of the population. What is
more, not only is the predictive performance powerful, but also the interpretability analysis via SHapley
Additive exPlanations (SHAP) discloses that salinity-related parameters, sodium hazard indicators,
groundwater level conditions, and dissolved constituents are the main drivers in deciding the
groundwater suitability. The correlation of these significant features with established hydrogeochemical
knowledge backs up the scientific reliability of the model. To sum up, the attained accuracy and FI-
score along with the transparent interpretability confirm that the proposed system is very effective and
also suitable for practical application in real-world groundwater quality management.

Keywords; Groundwater Quality, Machine Learning, CatBoost, Irrigation Suitability, Binary
Classification, SHAP.

INTRODUCTION

Groundwater is the main source of freshwater for millions of people around the
globe, especially in places where the supply of surface water is either limited or not
reliable. In many developing and semi-arid regions, groundwater is the main source
for drinking water supply, agricultural irrigation, and industrial usage, thus its
quality is a critical determinant for public health, food security, and economic
stability. However, human activities, uncontrolled groundwater abstraction, heavy
use of fertilizers and pesticides in agriculture, and industrial discharge have all
contributed to the decline of groundwater quality over a wide area in the last
decades.

Conventional groundwater quality evaluation methods mainly rely on
physicochemical analysis, and deterministic hydrogeochemical modeling.
Although these methods are time-consuming, data-intensive, and limited in their
ability to model the complex and nonlinear interactions among water quality
variables, they provide valuable insights into individual parameters. Moreover,
conventional assessment methods often use predefined thresholds and subjective
weighting schemes, which can create uncertainty and reduce robustness when
applied in different hydrogeological settings [1].
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To make the interpretation of groundwater quality easier,
the Water Quality Index (WQI)-based frameworks have
been extensively adopted. The indices convert numerous
parameters into a single score, thus making communication
and decision-making easier. Nevertheless, the WQI methods
are frequently plagued by strict classification limits and lack
of adaptability to spatial and temporal changes, particularly
when very small amounts of contaminants and seasonal
variations are involved [2]. Consequently, there is a growing
consensus that data-driven and machine learning methods
are more suitable for tackling the complexity inherent in
groundwater systems.

Machine learning has made great strides recently, and
among the areas where it has been applied with great success
is the groundwater quality modeling because the ability of
the method to capture nonlinear relationships, handle high-

data, increase predictive accuracy.
learning techniques, in particular,
outperformed traditional statistical methods, providing
powerful generalization across different datasets [3].
However, many powerful predictive models in machine
learning are treated as "black boxes," which hinders their
interpretability and limits their acceptance by experts and
regulatory authorities in the field.

dimensional and

Ensemble have

The non-interpretability of models is a major obstacle to
the utilization of machine learning
management. Decisions regarding water resources need to
be supported with reasoning, and thus transparency and trust
are necessary. Among the methodologies that have come to

in groundwater

the forefront of this problem is Explainable Artificial
Intelligence (XAI) which includes SHapley Additive
exPlanations (SHAP) among its mainstay techniques that
provide both global and local explanations of model
predictions [4]. Thus, carving out a niche for interpretability
along with predictive performance becomes a prerequisite
for the establishment of trustworthy decision-support
systems in groundwater quality assessment.

As a result of these difficulties, an implicit machine
learning framework for groundwater quality classification
using CatBoost and SHAP is proposed in this study. The
data used for the study consists of the post-monsoon
quality of Telangana, India,
groundwater is an important source for irrigation and

groundwater where
domestic supply. This research intends to narrow the
predictive accuracy and practical usability gap by treating
groundwater quality assessment as a binary classification
problem and coupling model explainability with the
prediction made.

RELATED WORK

Application of machine learning methods and techniques
for groundwater quality assessment has been drawing
significant attention lately mainly due to the data availability
for monitoring and high computational power. [5]. These
studies served as a base for the fast spread of machine
learning becoming the main approach in groundwater
research.

Various researchers attempted to utilize artificial neural
networks for predicting groundwater quality and great
accomplishments were noticed in the case of both drinking
and irrigation suitability assessment [6]. The neural
network-based models are especially good for nonlinear
relationship ~ modeling  amongst  physicochemical
parameters, but still, the performance is directly related to
the data quality and model tuning. Another drawback is that
they lack transparency which means that interpretation is
difficult.

Ensemble learning techniques like Random Forest,
Gradient Boosting, and Extremely Gradient Boosting have
taken the groundwater quality prediction accuracy to the
next level by integrating numerous weak learners [7]. The
models also present robustness and the problem of
overfitting is reduced which is a benefit for mixed
groundwater datasets. However, at the same time, the use of
ensemble models often complicates the interpretability issue
further because of their intricate internal structures.

Groundwater quality assessment has been greatly
enhanced by the combination of hydrogeochemical analysis
and machine learning, according to recent research [8]. This
is what the hybrid methods do: they meld together the
knowledge from the domain and the data analysis, thus
leading to more precise classification and prediction. In
addition, wide-ranging reviews have pointed out the gradual
change from conventional models to interpretable machine
learning frameworks in groundwater research [9].

Data mining processes have been extensively utilized for
groundwater quality classification, mainly in regional
assessments. Revealing patterns and determining feature
significance are the advantages of these techniques;
however, they are not very strong in predictive ability when
used alone [10]. The use of optimization algorithms and
hybrid modeling, which performance prediction boosting,
has been suggested as a solution to this problem [11].
Gradations in groundwater quality due to climate variability
and human activities are of a complex nature. The reliability
of long-term predictions is increased if climatic variables

https://ijisem.com

47



IJISEM

INTERNATIONAL JOURNAL OF
INNOVATIONS IN SCIENCE
ENGINEERING AND MANAGEMENT

International Journal of Innovations In Science Engineering And Management

and time factors are taken into account in the machine
learning models [12]. Moreover, certain regional studies
have revealed the need for specific modeling approaches
based on the geographical differences in groundwater
systems [13].

To start with, machine learning applications in India
have been reported for the quality evaluation of groundwater
and have given good results in different types of
hydrogeological conditions like arid and semi-arid areas,
etc. [14]. Data mining—based groundwater studies of the past
have given a lot of help in understanding spatio-temporal
variability issues and classification techniques [15].

Recent reviews have collected and summarized

advancements in water quality forecasting and
classification, pointing to challenges related to data quality,
interpretability, and scalability as still existing [16]. Hybrid
and ensemble methods have been very successful in tasks of
predicting water salinity and quality [17]. Spatio-temporal
modeling methods have not only improved groundwater

quality mapping for irrigation but also other areas [18].

Machine learning-based indices and classification
frameworks for groundwater quality have been advancing,
with several studies reporting increased accuracy and
robustness across different regions [19], [20]. Seasonal
groundwater quality prediction has turned out to be a
significant research direction, pointing out the importance of
temporal dynamics in groundwater assessment [21].

Surface and groundwater quality modeling studies have
also demonstrated the value of machine learning—driven
prediction systems for real-time decision support [22].
Advanced optimization-based ensemble models have further
improved groundwater quality classification reliability [23].
Recent studies combining hydrogeochemistry with machine
learning have confirmed the effectiveness of integrated
frameworks for both drinking and irrigation suitability [24].
Performance evaluation of classification algorithms remains
an important consideration for groundwater data analysis
[25].

Overall, the literature highlights the growing importance
of interpretable, data-driven groundwater quality assessment

frameworks that balance

transparency.

predictive accuracy with

METHODOLOGY

This research implements a systematic and repeatable
machine learning process to create a model for groundwater
quality classification that is intelligible. The method is
influenced by a triad of major goals: (i) to build a strong
predictive model that can classify the groundwater
suitability correctly, (ii) to make certain the model is reliable
in the presence of class imbalance and diverse feature
distributions, and (iii) to utilize explainable artificial
intelligence methods to give clear justifications of the model
output. The entire approach includes data collection,
cleaning and converting, feature construction, model
making, performance rating, and interpretation study.

Study Area and Dataset Description

The dataset utilized for analyzing groundwater quality in
this study is derived from the post-monsoon groundwater
monitoring which was carried out in various Telangana
districts, India, during the years 2018, 2019, and 2020.
Telangana is a region characterized by semi-aridity and
hence groundwater is the main source for irrigation and
drinking purposes. The variability of rainfall during the
different seasons, the adoption of intensive agriculture in
some parts, and the growing demand for groundwater have
all resulted in variations in the quality of groundwater in this
region over time and space.

The  dataset contains  physicochemical and
hydrogeological parameters that are usually considered in
the assessment of the groundwater quality such as pH, total
dissolved solids, total hardness, and so on, besides the
groundwater level indicators and seasonal attributes. Also,
spatial identifiers such as district information are included to
capture regional variability. Quality classification labels
based on irrigation suitability categories are assigned to each
groundwater sample.

A multi-year analysis is made possible and model
generalization is improved as datasets from the three years
are combined into one single dataset. The model learns the
patterns that are consistent over the years while considering
the annual fluctuations in groundwater quality.

Table 1 Dataset

Parameter Sample 1 Sample 2 Sample 3 Sample 4 Sample S
S. No. 302 312 129 123 122
District Sircilla Mahabubnagar Mahabubnagar Bhadradri Mahabubnagar
Mandal Ilanthakunta Mahabubnagar (R) CC Kunta Manuguru Bhoothpur
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Village [lanthukunta Kodur Kurumurthy Pagideru Elkicherla
Latitude (°N) 18.31194 16.68000 16.441442 17.97000 16.62300
Longitude (°E) 78.95638 77.92400 77.816757 80.73000 78.11600
Groundwater Level (m) 3.51 7.66 19.73 0.87 3.21
Season Post-monsoon Post-monsoon Post-monsoon Post-monsoon Post-monsoon
2020 2019 2019 2020 2020
pH 8.02 7.95 7.79 8.12 8.98
TDS (mg/L) 485.12 852.48 811.52 1048.32 524.80
Total Hardness (mg/L) 219.96 379.93 439.96 339.92 219.93
SAR 2.316 3.132 1.605 4.217 2.697
RSC (megq/L) 0.0008 0.4015 —2.9992 —0.9984 0.8013
Irrigation Class C381 C381 C381 C381 C3S1
Water Quality Status P.S. P.S. P.S. P.S. P.S.

Target Variable Definition
Groundwater quality evaluation is
supervised binary classification task. The classification trick

viewed as a

does not predict continuous water quality indices but rather
focuses on deciding the use of a groundwater sample, that is,
whether it is suitable or unsuitable for usage. This way of
thinking fits exactly with the practical decision-making
needs in the management of water resources where binary
suitability assessments are usually more effective than
numerical indices.

The initial classification categories for irrigation water
are changed into a binary target variable. The samples that
are classified under the irrigation suitability categories with
favorable conditions are assigned the label “1” (suitable),
while all the other categories are assigned the label “0”
(unsuitable). This change gives consistency over the years
and provides a simpler way of assessing the performance of
models without losing the vital information necessary to
judge the suitability of groundwater.

Data Preprocessing and Cleaning

The raw dataset collected comprises both numerical and
categorical characteristics, besides, there are missing values
and redundant attributes. Data preprocessing is a pivotal
activity that guarantees the stability and strength of the
model. The proposed preprocessing plan is composed of the
following stages:

Redundant and Non-Informative Attributes Removal:

The identifiers like serial numbers, village names, and
very exact geographic coordinates will be eliminated since
they do not have a direct impact on the groundwater quality
classification and may also cause noise.

Dealing with Missing Values:
For categorical attributes, a missing value is substituted
for a distinct category to keep the information intact and at

the same time prevent data loss. In the case of numerical
attributes that have missing or invalid data, the binning
method will be applied reducing sensitivity to outliers.

Feature Transformation and Binning:

Continuous numerical variables will be converted to
quantile-based bins. This transformation reduces the
influence of extreme values, improves the interpretability of
the model, and is in line with the strengths of the CatBoost

algorithm in dealing with categorical processing.

Rare Category Encoding:

The rare categories in the categorical features like the
district, season, and binned hydrochemical parameters are
together using rare label encoding. This process results in
reduced sparsity and the model being less likely to overfit to
the unseen categories.

Class Imbalance Handling:

The groundwater suitability datasets usually have a class
imbalance issue, with the number of suitable samples being
greater than that of the unsuitable ones or vice versa,
depending on the region. In order to counteract the bias, the
class weights are calculated and then applied during model
training, thus ensuring that equal importance is given to both
classes.

Feature Engineering

Feature engineering is the process of improving the
model’s predictive power and its interpretation as well. The
parameters used in the hydrochemical analysis are expressed
in the form of categories that reveal the most significant
ranges from the perspective of groundwater quality
evaluation. To illustrate this, the values for groundwater
levels are transformed using the logarithmic transformation
and then grouped into bins so that their skewness is taken
into account, while pH values are categorized into easily
understandable intervals.
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Seasonal characteristics are kept in place in order to
reflect the influence of the post-monsoon period on the
groundwater quality, as the rain-induced recharge plays a
key role in the processes of dilution and contaminant
transportation. Regional characteristics, such as district
codes, are incorporated into the model so that it can discover
and recognize the spatial patterns that are connected to
different types of geology and land use.

The feature set that is generated is comprised of a
balanced combination of hydrochemical, hydrogeological,
seasonal, and spatial attributes, which makes it possible for
the model to depict the multidimensional nature of
groundwater quality changes.

Model Selection: CatBoost Classifier

The CatBoost classifier has been chosen as the main
predictive model owing to its ability to effectively deal with
structured tabular data that comprises different feature types.
CatBoost has a number of advantages that are especially
pertinent to the classification of groundwater quality:

e (Categorical attributes are automatically processed
without the need for extensive one-hot encoding.

e Ordered boosting prevents overfitting resulting in
very robust models.

e Strong performance on datasets with class
imbalance.

e  The model can represent the nonlinear interactions

between the features.

Training set
N samples, M features

-

Target statistics method to handing
categorical features
| Features combinations I
e 1
’ Training
Building T
CART trees
One after
another
Weighting g

mcrease

Prediction: The weights average
aggregation of all predictors
e s et 7Y

Figure 1 CatBoost Classifier

A great selection of hyperparameters is used for
configuring the model, such as tree depth, learning rate,
regularization strength, and the number of iterations. These
parameter values are selected in a way that neither the
complexity of the model nor the generalization capability of
it is compromised.

The dataset is divided into the training and testing
subsets by means of stratified sampling that maintains the
proportion of classes. The weighted loss functions are used
in model training to compensate for the class imbalance, and
hence the probabilistic predictions are made for evaluation.

Model Interpretability Using SHAP

Explainability is among the key elements of the
methodology, where the SHapley Additive exPlanations
(SHAP) are used to evaluate the role of features. With the
help of SHAP values, the role of each feature is shown in
predictions of individuals as well as the overall model
behaviour.

The two interpretations of the analysis complement each
other:

Global Interpretability: The most important
groundwater quality parameters throughout the data are
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pointed out by SHAP summary plots, which are ranked
according to their average effect on the output of the model.

Local Interpretability: To learn the influence of certain
parameter ranges on groundwater suitability classification,
the feature-wise distributions of SHAP values are examined.

RESULT AND DISCUSSION

This section discusses the outcomes obtained from the
proposed CatBoost-based groundwater quality classification
framework, strictly based on the experimental findings
presented in the thesis. The discussion focuses on
classification  effectiveness, behavior,
interpretability characteristics observed during
experimentation, without introducing any additional or
inferred results.

model and

Classification Performance Qutcomes

The empirical assessment reveals that the classifying
model based on CatBoost secures exceptionally accurate
predictions when it is implemented on the post-monsoon
groundwater quality dataset that has been processed. The
model exhibited a considerable capability to differentiate,
which was further confirmed by a high ROC-AUC score
during testing that indicated the successful discrimination of
groundwater samples into good and bad ones.

On the test dataset, the model had an overall
classification accuracy of 97.30%, which indicates that the
majority of groundwater samples were classified correctly.
Moreover, an Fl-score of 0.9375 was recorded, which
indicates a strong precision-recall balance despite class
imbalance in the dataset. These outcomes confirm that the
model effectively copes with imbalanced class distributions
without altering its reliable classification performance.

The performance metrics of training and testing that
were consistent, led to the conclusion that the model is
capable of generalizing and is also free from the problem of
overfitting. The said reliability in the model's outcome is
especially needed in groundwater quality assessment since
data variability among different regions and over time could
drastically impact the model's reliability.

Table 2 Accuracy & F1- Score

Metric Value
Accuracy 0.9730
F1-Score 0.9375

Confusion Matrix Interpretation

Analysis of confusion matrices gives a thorough
explanation of proper and improper classifications. The
results indicate that the majority of groundwater samples
were categorized correctly according to their suitability. The
rates of misclassification were low, and among them, there
were especially few cases of unsatisfactory groundwater
being mistakenly classified as satisfactory.

This result indicates the success of the weight given to
classes and the strict decision limits applied during the
training of the model. Groundwater management requires
very careful and delicate handling whereby mistakes of false
negatives should not just be tolerated but rather eliminated
completely. This is because incorrect judgment on water
quality may lead to unpleasant consequences in agriculture
and the environment. Hence, the results of the confusion
matrix prove that the proposed framework is suitable for
practical groundwater quality screening.

Confusion Matrix

160
140
120

100

=l

True label

60

40

20

; Ib
& &
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Figure 2 Confusion Matrix

SHAP-Based Interpretability Outcomes

The application of SHapley Additive exPlanations
(SHAP) for interpretability analysis, on the one hand,
showed that only a small number of physicochemical
parameters were always dominating the groundwater quality
classification. On the other hand, the parameters linked to
salinity, sodium hazard, and dissolved constituents exhibited
the highest SHAP values, thus indicating their crucial role in
the groundwater classification process.

The extraction of SHAP values further drew a map of
contributions wherein one range of features added positively
to the classification of suitability while another range of
features had a negative contribution. The patterns derived
from the training are in line with the established
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hydrochemical understanding, and this has given the model
a seal of approval as being the one that captures meaningful
relationships instead of spurious correlations.

High
s o - -
TH ¢ PR
SAR §ln o "
RSC meq /L () B
district el %
o G :
season o
log10_gw! #
Low

-1 0 1 2 3 4 5
SHAP value (impact on model output)

Figure 3 SHAP Analysis
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SHAP values for column TDS, Isbel Classification

Feature-Wise SHAP Distribution Behavior

The exploration of SHAP distributions feature-wise
revealed that there are groundwater quality parameters
which keep contributing steadily and uniformly across their
classes, whereas some others show the opposite with their
contribution changing a lot depending on concentration
levels. The mentioned scenario reflects a sort of threshold
effect where certain ranges of parameters lead to totally
different classification results.

These findings are helpful for pinpointing the parameters
that need to be monitored more closely and for getting to
know the extent to which the quality of groundwater
decisions is affected by the variations within the specific
parameter ranges.
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Figure 4 Feature-Wise SHAP Analysis

Permutation Feature Importance Validation

The evaluation metric for the permutation feature
importance analysis was ROC—AUC. The outcomes were in
close agreement with the rankings based on SHAP feature

importance, which led to the conclusion that the parameters
with the highest SHAP scores also the most significant
performance drop during the permutation process.
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The closeness of these two independent interpretability
methods not only validates the detected main groundwater

quality factors but also proves the model's understanding to
some extent.

Permutation Feature Importance

TDS

Season

pH

district -

RSC meq LA

logl0_gwl -

0.000 0.025 0.050

0.075

0.100 0.125 0.150 0.175 0.200

Mean decrease in ROC-AUC

0.1 Permutation Feature Importance

Overall Model Behavior and Findings

The experimental results confirm that the CatBoost-
based classification framework performs accurately,
robustly, and consistently when applied to multi-year
groundwater quality data. The combination of categorical
feature handling, class weighting, and ensemble learning
enables the model to capture complex nonlinear interactions
without overfitting.

Importantly, the integration of SHAP and permutation
importance ensures that model decisions remain transparent
and hydrochemically meaningful. The results validate the
proposed framework as an effective and interpretable
approach for groundwater quality classification aligned with
practical irrigation and agricultural decision-making needs.

CONCLUSION

The presented study lays the groundwork for a
Groundwater Quality Classification System based on
interpretable machine learning that employs CatBoost and
SHAP. Processing the real-world post-monsoon
groundwater data from Telangana, India the research shows
that machine learning models can effectively understand
difficult hydrochemical interactions and at the same time
keep things clear by using explainable Al techniques. The
findings verify that CatBoost delivers strong classification
performance on various and unequal groundwater datasets
and that SHAP facilitates significant interpretation of the

model outputs. The suggested framework allows for
groundwater management and enhances it by providing a
large-scale regional water quality assessment solution.

Looking ahead, researchers might develop the current
study by involving spatio-temporal modeling, multi-class
classification, and real-time monitoring systems to further
improve groundwater quality management strategies.
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