Tunable Gas Sensing Properties of ZnO Thin Films through Layer Engineering: Structural, Morphological, and Optical Analysis
DOI:
https://doi.org/10.69968/ijisem.2025v4i2230-237Keywords:
Multilayer, Semiconductor, Gas Sensing, ZnO, XRD, FESEM, UV-visAbstract
The sol-gel method was employed to effectively "synthesise multilayer ZnO thin films with 3, 5, and 7 layers". The films were characterised for their optical, compositional, morphological, and structural properties. The crystalline quality was enhanced, as evidenced by the decrease in dislocation density and the increase in crystallite size as the number of layers increased, as confirmed by X-ray diffraction (XRD) and "the hexagonal wurtzite structure with a preferential (002) orientation". Field Emission Scanning Electron Microscopy (FESEM) revealed uniform and granular surface morphology, consistent across all layers, with particle size increasing slightly in thicker films. Energy Dispersive Spectroscopy (EDS) validated nearly stoichiometric Zn and O composition, with no significant variation due to the number of layers, indicating high purity. UV-Vis spectroscopy demonstrated strong UV absorption and excellent transparency in the visible region, with optical bandgap values of 2.66 eV, 2.80 eV and 2.81 eV for 3, 5 and 7 layers, respectively, suggesting improved optical properties in thicker films. The results confirm the suitability of these films for optoelectronic, UV-sensing, and photocatalytic applications, with tunable properties enabled by varying the number of layers. This study underscores the reliability of the sol-gel method for fabricating high-quality multilayer ZnO thin films.
References
[1] Abou-Ras, D., Caballero, R., Fischer, C.-H., Kaufmann, C. A., Lauermann, I., Mainz, R., Mönig, H., Schöpke, A., Stephan, C., & Streeck, C. (2011). Comprehensive comparison of various techniques for the analysis of elemental distributions in thin films. Microscopy and Microanalysis, 17(5), 728-751.https://doi.org/10.1017/S1431927611000523
[2] Borysiewicz, M. A. (2019). ZnO as a functional material, a review. Crystals, 9(10).https://doi.org/10.3390/cryst9100505
[3] Gao, J., Kempa, K., Giersig, M., Akinoglu, E. M., Han, B., & Li, R. (2016). Physics of transparent conductors. Advances in Physics, 65(6), 553-617.https://doi.org/10.1080/00018732.2016.1226804
[4] Kasar, C. K., Sonawane, U. S., Bange, J. P., & Patil, D. S. (2016). Optical and structural properties of nanoscale undoped and cerium doped ZnO with granular morphology. Journal of Materials Science: Materials in Electronics, 27, 11885-11889.https://doi.org/10.1007/s10854-016-5333-4
[5] Kaushal, A., & Kaur, D. (2011). Pulsed laser deposition of transparent ZnO/MgO multilayers. Journal of Alloys and Compounds, 509(2), 200-205.https://doi.org/10.1016/j.jallcom.2010.09.077
[6] Klein, J., Kampermann, L., Mockenhaupt, B., Behrens, M., Strunk, J., & Bacher, G. (2023). Limitations of the Tauc plot method. Advanced Functional Materials, 33(47), 2304523.https://doi.org/10.1002/adfm.202304523
[7] Kuddus, A., Mostaque, S. K., Mouri, S., & Hossain, J. (2024). Emerging II-VI wide bandgap semiconductor device technologies. Physica Scripta, 99(2), 022001.https://doi.org/10.1088/1402-4896/ad1858
[8] Leonardi, S. G. (2017). Two-dimensional zinc oxide nanostructures for gas sensor applications. Chemosensors, 5(2), 17.https://doi.org/10.3390/chemosensors5020017
[9] Li, X., Zhang, F., & Zhao, D. (2015). Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chemical Society Reviews, 44(6), 1346-1378.https://doi.org/10.1039/C4CS00163J
[10] Ni, S., Wang, Y. B., Liao, X. Z., Figueiredo, R. B., Li, H. Q., Ringer, S. P., Langdon, T. G., & Zhu, Y. T. (2012). The effect of dislocation density on the interactions between dislocations and twin boundaries in nanocrystalline materials. Acta Materialia, 60(6-7), 3181-3189.https://doi.org/10.1016/j.actamat.2012.02.026
[11] Pearton, S. J., Ren, F., Wang, Y.-L., Chu, B. H., Chen, K. H., Chang, C. Y., Lim, W., Lin, J., & Norton, D. P. (2010). Recent advances in wide bandgap semiconductor biological and gas sensors. Progress in Materials Science, 55(1), 1-59.https://doi.org/10.1016/j.pmatsci.2009.08.003
[12] Raub, A. A. M., Bahru, R., Nashruddin, S. N. A. M., & Yunas, J. (2024). A review on vertical aligned zinc oxide nanorods: Synthesis methods, properties, and applications. Journal of Nanoparticle Research, 26(8), 186.https://doi.org/10.1007/s11051-024-06098-w
[13] Ren, Y., Liu, P., Liu, R., Wang, Y., Wei, Y., Jin, L., & Zhao, G. (2022). The key of ITO films with high transparency and conductivity: Grain size and surface chemical composition. Journal of Alloys and Compounds, 893, 162304.https://doi.org/10.1016/j.jallcom.2021.162304
[14] Salim, K., & Amroun, M. N. (2022). Study of the effects of annealing temperature on the properties of ZnO thin films grown by spray pyrolysis technique for photovoltaic applications. Int. J. Thin. Film. Sci. Tec, 11(1), 19-28.https://doi.org/10.18576/ijtfst/110103
[15] Salim, K., & Azzaoui, W. (2023). Physical properties of spray pyrolysed ZnO thin films obtained from nitrate, acetate and chloride precursors: Comparative study for Solar Cell Applications. Revista Mexicana de Fisica, 69(3).https://doi.org/10.31349/RevMexFis.69.031002
[16] Samadi, M., Zirak, M., Naseri, A., Khorashadizade, E., & Moshfegh, A. Z. (2016). Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films, 605, 2-19.https://doi.org/10.1016/j.tsf.2015.12.064
[17] Shahzad, S., Javed, S., & Usman, M. (2021). A Review on Synthesis and Optoelectronic Applications of Nanostructured ZnO. In Frontiers in Materials (Vol. 8). Frontiers Media S.A.https://doi.org/10.3389/fmats.2021.613825
[18] Xuan, J., Zhao, G., Sun, M., Jia, F., Wang, X., Zhou, T., Yin, G., & Liu, B. (2020). Low-temperature operating ZnO-based NO2sensors: A review. In RSC Advances (Vol. 10, Issue 65, pp. 39786-39807). Royal Society of Chemistry.https://doi.org/10.1039/D0RA07328H
[19] Zhang, C., Zhao, D., Gu, D., Kim, H., Ling, T., Wu, Y. R., & Guo, L. J. (2014). An ultrathin, smooth, and low‐loss Al‐doped Ag film and its application as a transparent electrode in organic photovoltaics.https://doi.org/10.1002/adma.201306091
[20] Atul Sarojwal and Akriti Garg 2024. Enhancing Solar PV Array Output and Efficiency through IoT- Based Modern Techniques. International Journal of Innovations in Science, Engineering And Management. 3, 2 (Dec. 2024), 214-222.DOI:https://doi.org/10.69968/ijisem.2024v3si2214-222.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Rajni Kant Verma, Ashok Jangid, Ranjit Kumar

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Re-users must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. This license allows for redistribution, commercial and non-commercial, as long as the original work is properly credited.