Real-Time Anomaly Detection with AI-Driven Syslog Monitoring for Bioinformatics Reliability

Authors

  • Sambasiva Rao Madamanchi Unix/Linux Administrator, Dept of Veterans Affairs (Austin, TX).

DOI:

https://doi.org/10.69968/ijisem.2025v4i2403-408

Keywords:

AI, Sys Log, Detection, Bioinformatics

Abstract

In this study, we present a novel framework that integrates AI-based anomaly detection with syslog monitoring to enhance the reliability of microbial pipelines. Syslog data, typically underutilized in bioinformatics, is collected and parsed to extract features such as error frequency, runtime patterns, and resource usage indicators. We apply machine learning models including Isolation Forests and LSTM Autoencoders to identify deviations from normal system behavior in real time. Experimental evaluations on both real and simulated microbial workflows demonstrate high accuracy in detecting anomalies, including those that do not trigger pipeline-level errors. A key use case illustrates how the system prevents corrupted outputs caused by unnoticed memory faults during taxonomic classification.

References

[1] Ahmad, S., Lohiya, S., Taksande, A., Meshram, R. J., Varma, A., & Vagha, K. (2024). A comprehensive review of innovative paradigms in Microbial Detection and antimicrobial resistance: Beyond traditional cultural methods. Cureus.https://doi.org/10.7759/cureus.61476

[2] Baker, M., Fard, A. Y., Althuwaini, H., & Shadmand, M. B. (2023). Real-time AI-based anomaly detection and classification in power electronics dominated grids. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 4(2), 549-559.https://doi.org/10.1109/JESTIE.2022.3227005

[3] Dong, Y.-H., Luo, Y.-H., Liu, C.-J., Huang, W.-Y., Feng, L., Zou, X.-Y., Zhou, J.-Y., & Li, X.-R. (2024a). Changes in microbial composition and interaction patterns of female urogenital tract and rectum in response to HPV infection. Journal of Translational Medicine, 22(1).https://doi.org/10.1186/s12967-024-04916-2

[4] Dong, Y.-H., Luo, Y.-H., Liu, C.-J., Huang, W.-Y., Feng, L., Zou, X.-Y., Zhou, J.-Y., & Li, X.-R. (2024b). Changes in microbial composition and interaction patterns of female urogenital tract and rectum in response to HPV infection. Journal of Translational Medicine, 22(1).https://doi.org/10.1186/s12967-024-04916-2

[5] Han, D., Sun, M., Li, M., & Chen, Q. (2023). LTAnomaly: A Transformer variant for syslog anomaly detection based on multi-scale representation and long sequence capture. Applied Sciences, 13(13), 7668.https://doi.org/10.3390/app13137668

[6] Li, H., Xu, H., Li, Y., & Li, X. (2024). Application of artificial intelligence (ai)-enhanced biochemical sensing in molecular diagnosis and Imaging Analysis: Advancing and challenges. TrAC Trends in Analytical Chemistry, 174, 117700.https://doi.org/10.1016/j.trac.2024.117700

[7] Munhoz, V., Bonfils, A., Castro, M., & Mendizabal, O. (2023). A performance comparison of HPC workloads on traditional and cloud-based HPC clusters. 2023 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW), 108-114.https://doi.org/10.1109/SBAC-PADW60351.2023.00026

[8] Mölder, F., Jablonski, K. P., Letcher, B., Hall, M. B., Tomkins-Tinch, C. H., Sochat, V., Forster, J., Lee, S., Twardziok, S. O., Kanitz, A., Wilm, A., Holtgrewe, M., Rahmann, S., Nahnsen, S., & Köster, J. (2021). Sustainable Data Analysis with snakemake. F1000Research, 10, 33.https://doi.org/10.12688/f1000research.29032.2

[9] Napa, M. A., & Lorenzon, A. F. (2024). A systematic literature review of I/O optimization in HPC and cloud computing environments. 2024 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW), 66-72.https://doi.org/10.1109/SBAC-PADW64858.2024.00020

[10] Ndibe, O. S. (2025). Ai-driven forensic systems for real-time anomaly detection and threat mitigation in cybersecurity infrastructures. International Journal of Research Publication and Reviews, 6(5), 389-411.https://doi.org/10.55248/gengpi.6.0525.1991

[11] Peterson, C.-L., Alexander, D., Chen, J. C.-Y., Adam, H., Walker, M., Ali, J., Forbes, J., Taboada, E., Barker, D. O., Graham, M., Knox, N., & Reimer, A. R. (2022a). Clinical metagenomics is increasingly accurate and affordable to detect enteric bacterial pathogens in stool. Microorganisms, 10(2), 441.https://doi.org/10.3390/microorganisms10020441

[12] Peterson, C.-L., Alexander, D., Chen, J. C.-Y., Adam, H., Walker, M., Ali, J., Forbes, J., Taboada, E., Barker, D. O., Graham, M., Knox, N., & Reimer, A. R. (2022b). Clinical metagenomics is increasingly accurate and affordable to detect enteric bacterial pathogens in stool. Microorganisms, 10(2), 441.https://doi.org/10.3390/microorganisms10020441

[13] Pohl, S., Elfaramawy, N., Miling, A., Cao, K., Kehr, B., & Weidlich, M. (2024a). How do users design scientific workflows? the case of Snakemake and nextflow. Proceedings of the 36th International Conference on Scientific and Statistical Database Management, 1-12.https://doi.org/10.1145/3676288.3676290

[14] Pohl, S., Elfaramawy, N., Miling, A., Cao, K., Kehr, B., & Weidlich, M. (2024b). How do users design scientific workflows? the case of Snakemake and nextflow. Proceedings of the 36th International Conference on Scientific and Statistical Database Management, 1-12.https://doi.org/10.1145/3676288.3676290

[15] R.W.P.M., R., K.2, V., & D.P.S.T.G, A. (2023). Establishment of a bioinformatics pipeline for the detection of pathogenic bacteria. Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 25(04), 818-826.https://doi.org/10.53550/AJMBES.2023.v25i04.040

[16] Weßner, J., Berlich, R., Schwarz, K., & Lutz, M. F. (2023). Parametric optimization on HPC clusters with Geneva. Computing and Software for Big Science, 7(1).https://doi.org/10.1007/s41781-023-00098-6

[17] Wright, R. J., Comeau, A. M., & Langille, M. G. (2023). From defaults to databases: Parameter and database choice dramatically impact the performance of metagenomic taxonomic classification tools. Microbial Genomics, 9(3).https://doi.org/10.1099/mgen.0.000949

[18] Yayla, E. (2024). Artificial Intelligence Applications in Clinical Microbiology Laboratory. Journal of Immunology and Clinical Microbiology, 9(2), 56-72.https://doi.org/10.58854/jicm.1404800

[19] Šabanović, K.-I., Arendt, C., Fricke, S., Geis, M., Böcker, S., & Wietfeld, C. (2024). AI-based anomaly detection for Industrial 5G networks by distributed SDR measurements. 2024 IEEE International Symposium on Measurements &Amp; Networking (M&Amp;N), 1-5.https://doi.org/10.1109/MN60932.2024.10615402

[20] Shivani Sahu et al. 2025. Combining SVM and Gradient Boosting for Enhanced Accuracy in Diabetes Diagnosis. International Journal of Innovations in Science, Engineering And Management. 4, 1 (Jan. 2025), 08-16.https://doi.org/10.69968/ijisem.2025v4i108-16

Downloads

Published

26-06-2025

Issue

Section

Articles

How to Cite

[1]
Madamanchi, S.R. 2025. Real-Time Anomaly Detection with AI-Driven Syslog Monitoring for Bioinformatics Reliability. International Journal of Innovations in Science, Engineering And Management. 4, 2 (Jun. 2025), 403–408. DOI:https://doi.org/10.69968/ijisem.2025v4i2403-408.