Molybdenum disulfide and its composites for Supercapacitor application: A Review
DOI:
https://doi.org/10.69968/ijisem.2025v4i3255-265Keywords:
Electrochemical performance, Molybdenum disulphide, Specific capacitance SupercapacitorAbstract
A transition metal dichalcogenide, molybdenum disulphide (MoS2) possesses unique properties, including a configurable bandgap, and a broad spectrum of potential applications in catalysis, electronics, and energy storage. It proved to be an effective electrode material for supercapacitors due to its high specific capacitance. Here electrochemical performances of MoS2 and its composites with different preparative methods and conditions have been summarized. The main advantages and disadvantages of MoS2-based electrodes are also covered in the review.
References
[1] Y. Zhong, X Xia, J Zhan, J. Tu and H.J Fan, Adv. Sci, (2016), 3,1500286.https://doi.org/10.1002/advs.201500286
[2] Y.H. Wang, K.J Huang and X. Wu, Biosens Bioelectron, (2017), 97.
[3] Y. X. Chen, K.J Huang and K.X. Niu, Biosens Bioelectron, (2018), 99, 612.https://doi.org/10.1016/j.bios.2017.08.036
[4] M. Chen, J Wang, X Yan, J Ren, Y Dai, Q. Wang, Y Wang and X Cheng, Alloys Compd., (2017),722,250.https://doi.org/10.1016/j.jallcom.2017.06.118
[5] X. Wu, Y. Zeng, H Gao, J Su, J Liu, and Z. Zhu material chemistry, A, (2013),1,469.https://doi.org/10.1039/C2TA00622G
[6] X. Hu. W. Xiong, W Wang, S. Qin, H Cheng, Y Zeng, B Wang, ACS Sustainable Chem. engg, (2016), 4,1201.https://doi.org/10.1021/acssuschemeng.5b01263
[7] D. Lan, Y Chen, P. Chen, X Chen, X. xu, X. Pu, Y Zeng and Z. Zhu, ACS Appl. Interfaces, (2014), 6,11839.https://doi.org/10.1021/am503378n
[8] K. J. Huang, L. Wang, J.Z Zhang, J. E. Chem, (2015), 752, 33.https://doi.org/10.1016/j.jelechem.2015.06.005
[9] W. Xiong, Y. Gao, X. Hu. D Lan, Y. Chen, ACS Appl. Mater Interfaces, (2014), 6, 19416.https://doi.org/10.1021/am5055228
[10] K. J. Huang, J. Z. Zhang, G. W. Shi, and Y. M. Liu, Electrochim Acta, (2014), 132,397.https://doi.org/10.1016/j.electacta.2014.04.007
[11] A. Ramadoss, T. Kim, G. S. Kim, and S. J. Kim, New,J. Chem, (2014), 38, 2379.https://doi.org/10.1039/c3nj01558k
[12] K. Krishnamoorthy, G.K. Veerasubramani, P. Pazhamalai and S.J. Kim, Electrochim Acta, (2016), 190,305.https://doi.org/10.1016/j.electacta.2015.12.148
[13] A.M. Bioye, F.N Ani, Renewable sustainable energy Rev, (2015), 52, 1282.https://doi.org/10.1016/j.rser.2015.07.129
[14] Y. X. Chen, K.J. Huang, F.Lin, and L.X Fang, Talanta, (2017), 175,168.https://doi.org/10.1016/j.talanta.2017.07.042
[15] L. Gao, X. Li, J. Chaeng, B. Wang, Z. Wang, RSC Adv, (2016), 6,57190.https://doi.org/10.1039/C6RA10178J
[16] Z. Wu, B. Li, Y Xue, J. Li, Y. Zhang and F. Gao, J. Mater chem. A, (2015), 3, 19445.https://doi.org/10.1039/C5TA04549E
[17] S Deng, Y. Zong, Y .Zeng, Y.Wang.Z Yao, F Yang, Adv Mater, (2017), 29,1700748.
[18] N. Choudhary, M Patel, N.B Dahotare, W. Lee, J. Mater. Chem. A, (2015), 3, 24049.https://doi.org/10.1039/C5TA08095A
[19] L. Zhang, H.B WU, Y. Yan, X. Wang Energy Enviorn.Sci, (2014) 7, 3302.https://doi.org/10.1039/C4EE01932F
[20] J. Zhou, J. Qin, N. Zhao, C. Shi, E. Z. Liu, J.Mater. Chem, A, (2016), 4, 8734.https://doi.org/10.1039/C6TA02565J
[21] Y. Luo, Y. Zhang, Y. Zhao, X. Fang, J.Ren, W. Weng, H. Sun, H. Peng, J. Mater. Chem A. (2015), 3, 17553.https://doi.org/10.1039/C5TA04457J
[22] G. Sun, X. Zhang, R. Lin, J. Yang, H. Zhang, Angew. Chem. Int. Ed., (2015), 54, 4651.https://doi.org/10.1002/anie.201411533
[23] M.H Yang, J.M Jeong, Y.S Hou, Compos, Sci, Technol., (2015), 121, 123.https://doi.org/10.1016/j.compscitech.2015.11.004
[24] T. N.Y Khawula, K. Raju, P.J.franklyn, L. Sigalas, Mater Chem, A, (2016), 4, 6411.https://doi.org/10.1039/C6TA00114A
[25] U. M. Patil, M.S Nam, S. Kang, J.S. Sohn, H. B. Sim, RSc Adv, (2016), 6,43261.https://doi.org/10.1039/C6RA00670A
[26] R. Thangappan, S. Kalaiselvam, A. Elyperumal, R. Jayavel, M. Arivanandhan, R. Karthikeyan, Dalton Trans., (2016), 45, 2637.https://doi.org/10.1039/C5DT04832J
[27] K. Gopalkrishnan, S. Sultan, A. Govindaraj, C. N. R. Rao, Nano Energy, (2015), 12,52.https://doi.org/10.1016/j.nanoen.2014.12.005
[28] C. Yang, Z. Chen, I. Shakir, Y. Xu, and H. Lu, Nano Res., (2016), 9,951.https://doi.org/10.1007/s12274-016-0983-3
[29] J. Wang, Z. Wu, K. Hu, X. Chen, and H. Yin., J. Alloys Compd., (2015), 619,38.https://doi.org/10.1016/j.jallcom.2014.09.008
[30] C. Sha, B. Lu, H. Mao, J. Cheng, X. Pan, J. Lu, and Z. Ye Carbon, (2016), 99, 26.https://doi.org/10.1016/j.carbon.2015.11.066
[31] 31). V.D. Patake, C.D. Lokhande and Oh-Shim Joo, App.Surf. Sci., (2009) 255, 4192.https://doi.org/10.1016/j.apsusc.2008.11.005
[32] D. K. Sahoo, V. D. Patake, Adv. Energy Con. Mat., (2024) 5, 211.https://doi.org/10.37256/aecm.5220244792
[33] R.B. Pujari, A. C. Lokhande, A.R .Shelke, J. H. Kim, and C. D. Lokhande, J. Colloid Interface Sci., (2017), 496,1.https://doi.org/10.1016/j.jcis.2016.11.026
[34] T. M. Masikhwa, M. J. Madito, A. Bello, N .Manyala, J. Colloid Interface Sci, (2017), 488, 155-165.https://doi.org/10.1016/j.jcis.2016.10.095
[35] CNR Rao, Matte H.R., Subrhamanyam K. S., Acc. Chem. Res. (2013) 46, 149.https://doi.org/10.1021/ar300033m
[36] F. Bonnacorosso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo A. C. Ferrari, Mater. Today, (2012), 15, 564.https://doi.org/10.1016/S1369-7021(13)70014-2
[37] D. Chen, W. Chen, Ma L. J. Y Lee, K. Chang, Mater Today, (2014), 17, 184.https://doi.org/10.1016/j.mattod.2014.04.001
[38] W. Yuan, J. Chen, G. Shi, Mater. Today (2014), 17, 77.https://doi.org/10.1016/j.mattod.2014.01.021
[39] M.A Bisset, I, A Kinloch, R.A Dryfe, ACS Appl. Mater. Interfaces (2015), 7 17388.https://doi.org/10.1021/acsami.5b04672
[40] C. Zhan, W. Liu, M. Hu, Q. Liang, X. Yu, Y. Shen, F. Kang, NPG Asia Mater, (2018), 10,775.https://doi.org/10.1038/s41427-018-0073-y
[41] H. Yin, Y. Liu, N. Yu, H. Qu, R. Jiang, C. Li, M. Zhu, ACS Omega (2018), 3, 17466.https://doi.org/10.1021/acsomega.8b02446
[42] T. Quan, N. Goubard-Bretesche, E. Hark, S. Mei, N. Pinna, M. Ballauf, Y. Lu. Chem-Eur.J. (2019), 25, 4757.https://doi.org/10.1002/chem.201806060
[43] S. Garcia-Dali, J. I. Parades, J. M. Munuera, S. Villar- Rodil, A. Adawy, J.M.D. Tascon, A. Maritinez-Alanso. ACS Apl. Mater Interfaces (2019), 11, 36991.https://doi.org/10.1021/acsami.9b13484
[44] B. A. Ali, O. I. Metawalli, A. S. Khalil, N.K. Allam, ACS Omega. (2018), 3, 16301.https://doi.org/10.1021/acsomega.8b02261
[45] S.S. Karade, D. and B. R. Sankpal, RSC Adv., (2016), 6, 39159.https://doi.org/10.1039/C6RA04441G
[46] El-Kady, M. F. Kaner, RB, Nat Commun., (2013), 4,1475.https://doi.org/10.1038/ncomms2446
[47] S. Guo, S. Dong, Chem, Soc, Rev (2011), 40, 2644.https://doi.org/10.1039/c0cs00079e
[48] Z.S. Wu et al, Nat commun. (2013) 4, 2487.
[49] D. Sarkar et al, ACS Energy Lett. (2019) 4, 1602.https://doi.org/10.1021/acsenergylett.9b00983
[50] Y. Teng et al, ACS Nano., (2016) 10, 8526.https://doi.org/10.1021/acsnano.6b03683
[51] L. Yu. et al, Nano Lett, (2014), 14, 3055.https://doi.org/10.1021/nl404795z
[52] T. Sun et al, J Power sources (2016), 331, 180.https://doi.org/10.1016/j.jpowsour.2016.09.036
[53] R. Paul. et al, Adv Mater, (2019), 31, 1805598.
[54] A. Rajapriya et al,J Alloys Compd., (2020), 859, 157771.https://doi.org/10.1016/j.jallcom.2020.157771
[55] L. Zheng et al,Electrochim Acta., (2019), 298, 630-639.https://doi.org/10.1016/j.electacta.2018.12.126
[56] H. Wang et al, Mater Sci. Engg. B (2020), 262, 14700.
[57] Y. X. Chen, C. W. Wu, T. Y Ku, Y.I. Chang. M.H. Jen, I.W.P. Chen, Sci. Rep. 6 (2016).https://doi.org/10.1038/srep26660
[58] A Ejigu, I.A. Kinloch, E. Prestat, R. A.W. Dryfe, J Mater, Chem. A5 (2017) 11316.https://doi.org/10.1039/C7TA02577G
[59] K.M. Sarode, D.R. Patil, J. Nanoscience Technology (2018) 371.https://doi.org/10.30799/jnst.108.18040301
[60] A. Gorai. S.K Ray, A. Midya, , ACS Appl. Nano Mater, 2(3) (2019) 1170.https://doi.org/10.1021/acsanm.8b02002
[61] A. Ambrosi, Z. Sofer, , Small 11 (5) (2015) 605.https://doi.org/10.1002/smll.201400401
[62] S.S. Nardekar, K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, V. K. Mariappan, S. J. Kim, J. Mater Chem. A (8) (2020), 13121.https://doi.org/10.1039/D0TA01156H
[63] F. Wang et al, Mater Chem Phys., (2020) 244, 122215.https://doi.org/10.1016/j.matchemphys.2019.122215
[64] G. Zhao. et al, Electrochim Acta, (2020) 331, 135262.https://doi.org/10.1016/j.electacta.2019.135262
[65] D.N. Sangeetha, M. Selvkumar, Appl. Surf Sci., (2018), 453, 132.https://doi.org/10.1016/j.apsusc.2018.05.033
[66] DN Sangeetha et al, J Alloys Compd., (2020) 831, 154745.https://doi.org/10.1016/j.jallcom.2020.154745
[67] M. B. Wazir, M. Daud, N. Ullah, A.Hai, A. Muhamad, M. Yunuas, M. Rezakazemi, Int. J. Hydrog Energy (2019) 44, 17470.https://doi.org/10.1016/j.ijhydene.2019.04.265
[68] L. Z. Bai, F. Li, J. W. Wei, Z. Y. Zhang, Y. Q. Liu, J. Nanoscience Nanotechnology (2018) 18, 1804.https://doi.org/10.1166/jnn.2018.14234
[69] N. Islam, S. Wang, J. Warzywoda, Z. Fan, J. Power sources (2018) 400, 277.https://doi.org/10.1016/j.jpowsour.2018.08.049
[70] C. Nagaraju, C.V.V.M. Gopi, J.W Ahn., H. J. Kim, New Chem., (2018), 42, 12357.https://doi.org/10.1039/C8NJ02822B
[71] C Zhou, J. Wang, X. Yan, .Yuan, D. Wang, Y. Zhu, X. Cheng, Ceram. Int. (2019), 45, 21534.https://doi.org/10.1016/j.ceramint.2019.07.147
[72] L. Wang, Y. Ma, M. Yang, Y. Qi, Appl. Surface sci. (2017), 396, 1466.https://doi.org/10.1016/j.apsusc.2016.11.193
[73] F.N.I Sari, J.M Ting, , Sci.Rep. (2017) 7, 1.https://doi.org/10.1038/s41598-017-05805-z
[74] A. Ramadoss, T. Kim, G. S. Kim, S. J. Kim, New J.Chem. (2014) 38, 2379.https://doi.org/10.1039/c3nj01558k
[75] K. B. Pisal, A.S. Thorat, S.S. Jagtap, A.K. Gadekar, P. K. Pagare, S.H. Mujawar, L.D. Kadam, Mater today Proc. (2021), 43, 2701.https://doi.org/10.1016/j.matpr.2020.06.156
[76] S.K. Balsingam, M. Lee, B. H. kim, J.S Lee, Y. Jun, Dalton trans, (2017) 46, 2122.https://doi.org/10.1039/C6DT04466B
[77] D. Wang, Y. Xiao, X. Luo, Z. Wu, B. Fang,,ACS Sustain. Chem. Eng. (2017) 5, 2509.https://doi.org/10.1021/acssuschemeng.6b02863
[78] L. Xu, L. Ma, T. Rujiralai, X. Xhou, S. Wu, M. Liu, , RSC. Adv. (2017) 7, 33937.https://doi.org/10.1039/C7RA05055K
[79] H. Yin, H. Liu, N. Yu, Z. Liu, R. Jiang, C. Li, M.Q Zhu, ACS Omega (2018) 3, 17466.https://doi.org/10.1021/acsomega.8b02446
[80] L. Wang, Y. Ma, M. Yang, Y. Qi, , Electrochim. Acta. (2015) 186, 391.https://doi.org/10.1016/j.electacta.2015.10.130
[81] K. Krishnamoorthy, G. Kumar Veerasubramani, P. Pazamalai, S. J. Kim, Electrochim Acta (2016) 190, 305.https://doi.org/10.1016/j.electacta.2015.12.148
[82] D. Kesavan, V.K Mariappan, P Pazamalai, K. Krishnamoorthy, S. J. Kim, J. colloid interface Sci. (2021) 584, 714.https://doi.org/10.1016/j.jcis.2020.09.088
[83] R.B. Pujari, A. C. Lokhande, A.R. Shelke, J. H. Kim, and C. D. Lokhande, Colloid Interface Sci., (2017), 496,1.
https://doi.org/10.1016/j.jcis.2016.11.026
[84] S. S. Karade, D. P. Dubal, B. R. Sankapal, RSC, Adv. (2016) 6, 31159.https://doi.org/10.1039/C6RA04441G
[85] S. S. Karade, D. P. Dubal, B. R. Sankapal, Chem. sel (2017) 2, 10405.https://doi.org/10.1002/slct.201701788
[86] N. Choudhary, M. Patel, Y.H. Ho, N.B. Dahotre, W. Lee, J. W. Hwang, W. Choi, J. Mater. Chem. A 3 (2015)47, 24049.https://doi.org/10.1039/C5TA08095A
[87] A. Sanger, V. K. Malik, R. Chandra, Int. J. Hydrog. Energy (2018) 43, 11141.https://doi.org/10.1016/j.ijhydene.2018.05.005
[88] J. Mei Soon, K.P Loh, Electrochem, Solid State Lett. (2007) 10, A250.https://doi.org/10.1149/1.2778851
[89] P. Pazamalai, K. Krishnamoorthy, S. Sahoo, V. K. Mariappan, S. J. Kim,, Inorg. Chem. front (2019) 6, 2387.https://doi.org/10.1039/C9QI00623K
[90] F. Wang, J. Ma, K. Zhou, X. Li, Mater Chem. Phys. (2020), 244, 122215.https://doi.org/10.1016/j.matchemphys.2019.122215
[91] K. Sing, S. Kumar, K. Agarwal, K. Soni, V. R. Gedela, K. Ghosh, Sci. Rep. (2017) 7, 1.https://doi.org/10.1038/s41598-017-09266-2
[92] M. A. Bissett, I.A. Kinloch, R. A. W. Dryfe, ACS Appl. Mater, Interfaces (2015) 7, 17388.https://doi.org/10.1021/acsami.5b04672
[93] K. J. Huang, L. Wang, Y. J. Liu, Y. M. Liu, H. B. Wang, T. gan, L. L. Wang, Int. J. Hydrog. Energy (2013) 38, 14027.https://doi.org/10.1016/j.ijhydene.2013.08.112
[94] A. Lamberti Mater. Sci. Semicond. Process, (2018) 73, 106.https://doi.org/10.1016/j.mssp.2017.06.046
[95] Y. Zhang, P. Ju, C. Zhao, X.Qian, Electrochim.Acta (2016) 219, 693.https://doi.org/10.1016/j.electacta.2016.10.072
[96] R. Zhou, C. J. Han, X. M. Wang, J.Power Sources (2017) 352, 99.https://doi.org/10.1016/j.jpowsour.2017.03.134
[97] R. N. Bulakhe, J. J. Shim, , New J. Chem (2017) 41, 1473.https://doi.org/10.1039/C6NJ02590K
[98] L. Q. Fan, G. J. Liu, C. Y. Zhang, J. H. Wu, Y. L. Wei, Int. J. Hydrog. Energy (2015) 40, 10150.https://doi.org/10.1016/j.ijhydene.2015.06.061
[99] A. Gigot, M. Fontana, M. Serrapede, M. Gastelino, S. Bianco, M. Armandi, B. Bonelli, C. Fabrizio Pirri, E. Tresso, P. Rivolo, ACS Appl. Mater. Interfaces (2016) 8, 32842.https://doi.org/10.1021/acsami.6b11290
[100] R. Naz, M. Imtiaz, Q. Liu, L.Yao, W. Abbas, T.Li, I. Zada, Y. Yuan, W. Chen, J. Gu, Carbon (2019) 152, 697.https://doi.org/10.1016/j.carbon.2019.06.009
[101] E.G.D.S. Farmiano, A.C. Rabelo, C.J. Dalmaschio, A.N. Pinheiro, E. C. Pereira, W. H. Schreiner, E. R. Leite Adv. Energy. Mater. (2014) 4, 1301380.
[102] M. Saraf, K. Natarajan, S.M. Mobin, ACS Appl. Mater. Interfaces (2018) 10, 16588.https://doi.org/10.1021/acsami.8b04540
[103] N. A. Kumar, J. B. Baek, . Chem. Commun. (2014) 50, 6298.https://doi.org/10.1039/c4cc01049c
[104] G. Fu, I. Ma, M. Gan, X. Zhang, M. Jin, Y. Lie, P. Yang, M. Yan, Synth. Met. (2017) 224, 36.https://doi.org/10.1016/j.synthmet.2016.12.022
[105] J. Wang, Z. Wu, K.Hu, X. Chen, H. Yin, J. Alloy. Compd. (2015) 619, 38.https://doi.org/10.1016/j.jallcom.2014.09.008
[106] I. Ren, G. Zhang, J. Lei, D.Hu, S. Dou, H. Gu, H. Li, X. Zhang, , J.Alloy.Compd, (2019) 798, 227.https://doi.org/10.1016/j.jallcom.2019.05.240
[107] H. Wang, L. Ma, M. Gan, T. Zhou, J. Alloys. Compd. (2017) 699, 176.https://doi.org/10.1016/j.jallcom.2016.12.344
[108] C. Chang, X. Yang, S. Xiang, H. Que, M. Li, J. Mater Sci. Mater. Electron, (2017) 28, 1777.https://doi.org/10.1007/s10854-016-5725-5
[109] C. C. Tu, P. W. Peng, L. Y. Lin, , Appl. Surface sci. (2018) 444, 789.https://doi.org/10.1016/j.apsusc.2018.03.101
[110] I.W.P Chen, Y.C. Chou, P. Y. Wang, J. Phys. Chem. C (2019) 123, 17864-17872.https://doi.org/10.1021/acs.jpcc.9b04046
[111] X. Li, C. Zhang, S. Xin, Z. Yang, Y. Li, D. Zhang, ACS Appl. Mater. Interfaces (2016) 8, 21373.https://doi.org/10.1021/acsami.6b06762
[112] M. Majumdar, R. B. Choudhary, S.P. Koiry, A. K. Thakur, U. Kumar, Electrochim. Acta. (2017) 248, 98.https://doi.org/10.1016/j.electacta.2017.07.107
[113] R. Zhang, Y.Liao, S. Ye, Z. Zhu, R Soc. Open (2018) 5, 171365.https://doi.org/10.1098/rsos.171365
[114] Y. Wang, Y. Xie, J.Alloys. Compd. (2020), 824, 153936.https://doi.org/10.1016/j.jallcom.2020.153936
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Anil Dhawale, Sonali Raykar, Madhav Sarode, Y.B. Khollam, Vaibhav D. Patake

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Re-users must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. This license allows for redistribution, commercial and non-commercial, as long as the original work is properly credited.